光纤光栅

编辑
光纤光栅是一种无源器件,是利用光纤材料的光敏性,通过紫外光曝光的方法将入射光相干场图样写入纤芯,在纤芯内产生沿纤芯轴向的折射率周期性变化,从而形成永久性空间的相位光栅。光纤光栅的作用实质上是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。

光纤光栅历史

  1978年,加拿大通讯研究中心(CRC, Canadian Research Centre )的K.O. Hill及其合作者首次从接错光纤中观察到了光子诱导光栅。Hill的早期光纤是采用488nm可见光波长的氛离子激光器,通过增加或延长注入光纤芯中的光辐照时间而在纤芯中形成了光栅。后来Meltz等人利用高强度紫外光源所形成的干涉条纹对光纤进行侧面横向曝光在该光纤芯中产生折射率调制或相位光栅。

  1989年 G.Melts 报道了从光纤的侧面用激光的干涉曝光制作了光纤光栅,使光纤光栅得到迅速发展。

  1993年 K.O. Hill提出的相位掩模制造法使光纤光栅的制造技术得到重大发展,使光纤光栅的大批量制造成为可能。

光纤光栅分类

  1、光纤光栅按其空间周期和折射率系数分布特性可分为:

  ①相移光栅:在普通光栅的某些点上,光栅折射率空间分布不连续而得到的。它可以看作是两个光栅的不连续连接。它能够在周期性光栅光谱阻带内打开一个透射窗口,使得光栅对某一波长有更高的选择度。可以用来构造多通道滤波器件。

  ②啁啾光栅:栅格间距不等的光栅。有线性啁啾和分段啁啾光栅,主要用来做色散补偿和光纤放大器的增益平坦。

  ③闪耀光栅:当光栅制作时,紫外侧写光束与光纤轴不垂直时,造成其折射率的空间分布与光纤轴有一个小角度,形成闪耀光栅。

  ④长周期光栅:栅格周期远大于一般的光纤光栅,与普通光栅不同,它不是将某个波长的光反射,而是耦合到包层中去,目前主要用于EDFA的增益平坦和光纤传感。

  ⑤均匀周期光纤布喇格光栅:通常称为布喇格光栅,是最早发展起来的一种光栅,也是目前应用最广的一种光栅。折射率调制深度和栅格周期均为常数,光栅波矢方向跟光纤轴向一致。此类光栅在光纤激光器、光纤传感器、光纤波分复用/解复用等领域有重要应用价值。

  此外还有Tapered光纤光栅,取样光纤光栅、Tophat光栅、超结构光栅等。

  2、根据光纤光栅的成栅机理来分可分为三种:Ⅰ型、Ⅱ型和ⅡA型。

  ①Ⅰ型光栅:即最常见的光栅,可成栅在任何类型的光敏光纤上,其主要特点是其导波模的反射谱跟透射谱互补,几乎没有吸收或包层耦合损耗;另一特点是容易被“擦除”,即在较低温度(200℃左右)下光栅会变弱或消失。

  ②Ⅱ型光栅:由单个高能量光脉冲(大于0.5J/cm2)曝光形成。其透射谱只能使波长大于Bragg波长的光透射,波长小的部分被耦合到包层中损耗掉。成栅机理可理解为能量非均匀的激光脉冲被纤芯石英强烈放大造成纤芯物理损伤的结果。有极高的温度稳定性,在800℃下放置24小时无明显变化,在1000℃环境中放置4小时后大部分光栅才消失。

  ③ⅡA型光栅:成栅于高掺锗(15%mol)光敏光纤或硼锗共掺光敏光纤上,曝光时间较长。成栅机理于Ⅰ型不同。其写入过程为:曝光开始不久,纤芯中形成Ⅰ型光栅,随着曝光时间的增加,此光栅被部分或者完全擦除,然后再产生第二个光栅,即形成ⅡA型光栅,其温度稳定性优于Ⅰ型光栅,直到500℃附近才能观察到光栅的擦除效应,更适合于在高温下使用,如高温传感等。

光纤光栅特点

光纤光栅具有体积小、波长选择性好、不受非线性效应影响、极化不敏感、易于与光纤系统连接、便于使用和维护、带宽范围大、附加损耗小、器件微型化、耦合性好、可与其他光纤器件融成一体等特性,而且光纤光栅制作工艺比较成熟,易于形成规模生产,成本低,因此它具有良好的实用性,其优越性是其他许多器件无法替代的。这使得光纤光栅以及基于光纤光栅的器件成为全光网中理想的关键器件。

光纤光栅应用

光纤光栅在光纤通信系统中的应用 光纤光栅作为一种新型光器件,主要用于光纤通信、光纤传感和光信息处理。在光纤通信中实现许多特殊功能,应用广泛,可构成的有源和无源光纤器件。
 
10
本词条对我有帮助
 
 
词条标签