LETDO Electronics

-Your Best Partner for Electronic/Components

Power Capacitor for Electric Vehicles Application

LETDO

Industry Business Group

Andy Chen

chenzm@letdo-elec.com

Tel: 13823117002

Introduction

LETDO electronics has clearly incorporated the essence and idea of "let's do it" in the name itself. We insist on the core idea of honesty, trust, specialty, vitality. Having established for 10 years, we gladly invite and enlist the services of top notch professionals in this arena.

In order to achieve a common goal in becoming the number one passive component distributor, we have fought to ensure fast, flexible services with large warehouses, customised services, VMI, FAE technical support, EDI and samples which are part of our commitment to our customers.

Over 10 years of development, LETDO currently has three Companies in Hong Kong, Suzhou and Xiamen, as well as four branch companies in Shenzhen, Beijing, Quanzhou and Shanghai with 5 offices in Hangzhou, Wuhan, Chengdu, Xi'an and Changsha. Through the integration of our warehouses in Hong Kong, Quanzhou ,Suzhou and Shenzhen, we are thus able to extend our service networks to many cities, ensuring that our consumers have the most convenient access.

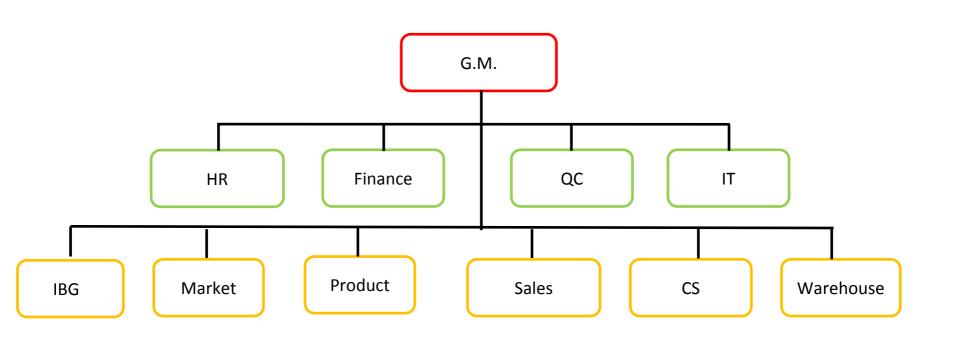
Through our positive work attitude and professionalism, we have successfully been able to establish long term partnerships with over 1,100 companies in various industrial sectors, such as those from the communications, IT industry, consumer electronics, automotive electronics, medical equipment, industrial machinery, power supply, lighting, rail transportation, energy, environmental protection. This is why we have expanded from a single brand to encompass various complement product brands as well, to act as a one stop shop to cater to our clients' needs. In 2009, we have also established the nation's first service-oriented "LETDO Express" for Sample, to provide customers with a series of products and strive to deliver the products within 48 hours.

Dear friends, we hope to have your support as we work towards achieving our goals.

Overview

- More than 10 years experience in distribution business.
- Represent world's leading brands (AVX/Kyocera、TDK、KEMET、TAIYO YUDEN、HDK、CMP、SI-EN).
- Total 12 Branches and Offices
- More than 1,100 long-term customers.
- Major markets:

communication, consumer, IT, automotive, medical, industrial, traffic and clean energy.

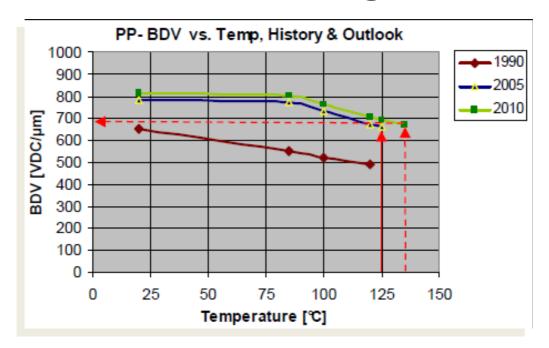

Milestones

- 1999 Q.Z TORCH International Limited in Hong Kong
- 2001 Shenzhen Office
- 2003 Suzhou LETDO Electronics Co.,Ltd
- 2004 Shanghai Office
- 2005 Beijing Office
- 2007 Xiamen LETDO Electronics Co., Ltd(Headquarter)
- 2007 Quanzhou Branch
- 2007 Chengdu Office
- 2008 Wuhan Office
- 2008 Shenzhen Branch
- 2009 Hangzhou Office
- 2009 Xi'an Office
- 2009 Beijing Branch
- 2009 Changsha Office
- 2010 Shanghai Branch

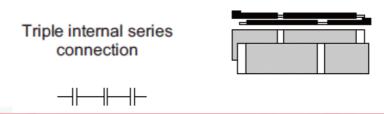
Organization

Customers

中国电力科学研究院 CHINA ELECTRIC POWER RESEARCH INSTITUTE


Dielectric Film Properties

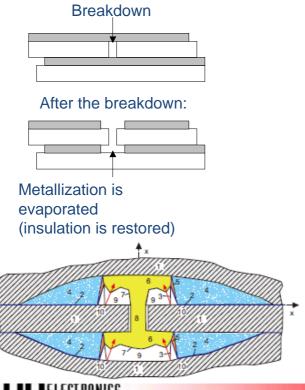
Film	Costs	T _{melt}	T _{max} [°C]	ε _r [-]	tanδ _(1kHz) [-]	U _{max} [ASTM D150-81]
Polypropylen [PP]	•	160	100	2,2	1,5x E-4	450V/µm
Polyester [PETP]		260	125	3,2	40x E-4	280V/µm
Polyethylene Naphtalate [PEN]	1	262	150	3,1	40x E-4	280V/µm
Polyphenylene Sulfid [PPS]	1	285	170	3	6x E-4	320V/µm
Current Status						
High T Polypropylene [PHD]	•	168	125	2,2	1,5x E-4	480V/μm
SMD PETP [CHT]	*	280	135	3,3	40x E-4	280V/µm
Potential for Development						
Coating of [PEN] and [PPS]	*	t.	b. d.			


LETDOELECTRONICS 東度由子

Breakdown Voltage Vs. Temperature

Polypropylen(PP) breakdwon voltage is about 600VDC/um .we designed our power film capacitor for 200V/um to 240V/um . If application condition is high temperature and high current ,we will reduce the breakdwon voltage .

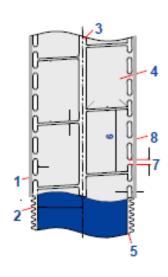
Internal Series connection can raise the product voltage



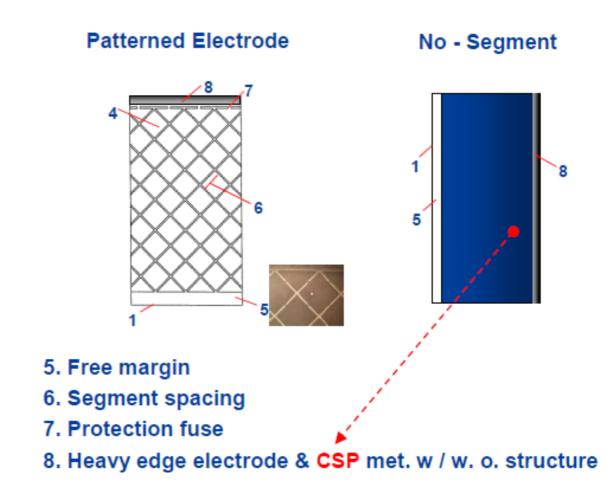
Self-healing property

How it works: the metal layer is very thin and, in case of dielectric breakdown, the energy released by the arc discharge in the breakdown channel totally evaporates the thin metal coating layer near the channel. This results in a restored insulation and a small capacitance drop.

Metallized film capacitors

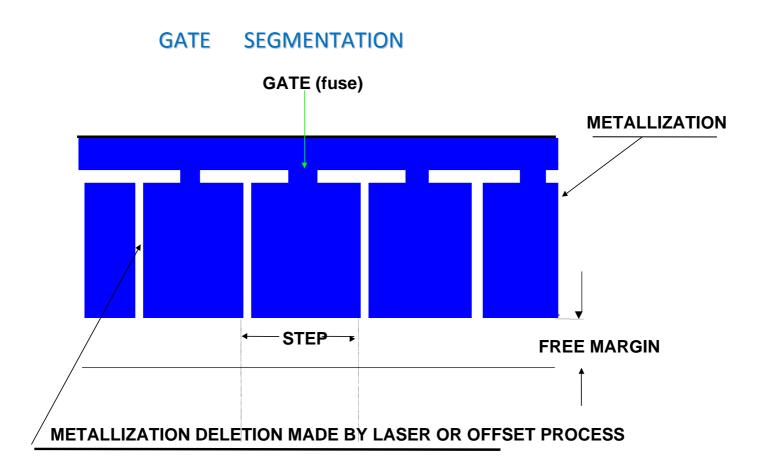


- Organic dielectric
- 2 Metallized electrodes
- 3 Material displacing shock wave
- 4 Air gap
- 5,6 Plasma discharge zone
 - 7 Boundary layer between plasma zone and dielectric
 - 8 Breakdown channel
 - 9 Dielectric in gas zone
- 10 Isolation area



Metalization Tool Box

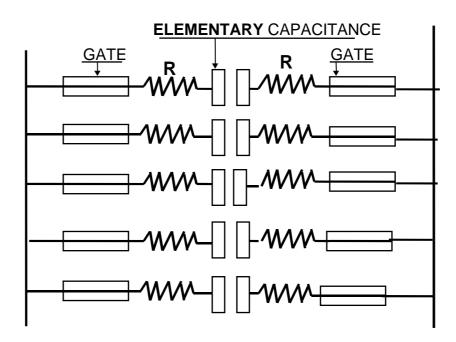
T - Segment



- 1. Smooth cut
- 2. Wavy cut
- 3. Free stripe
- 4. Partial capacitor

Metalization Tool Box

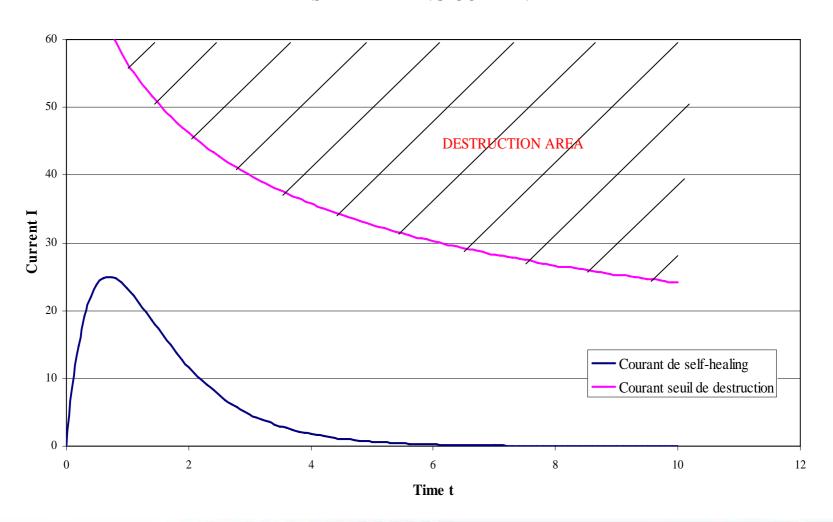
The Gate segmentation limits the self healing energy



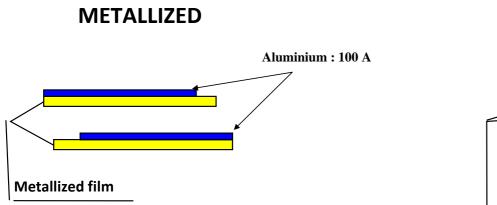
Metalization TooL Box

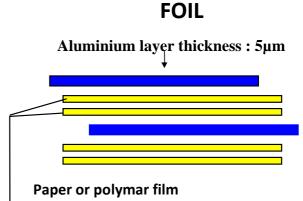
GATE SEGMENTATION

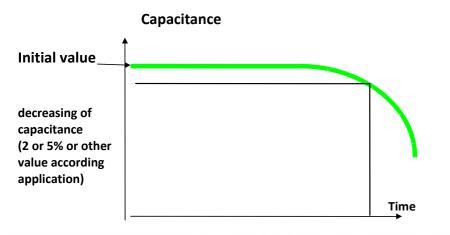
GATE SEGMENTATION LIMITS THE SELF HEALING ENERGY

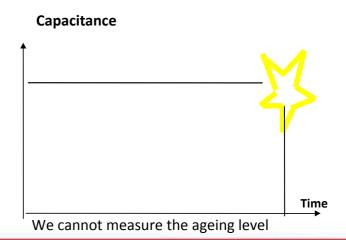


IN ADDITION TO THE COMB EFFECT, THE GATE IS ACTING AS A FUSE THE SELF HEALING CURRENT IS LIMITED BY THE RESISTIVITY OF THE FUSE

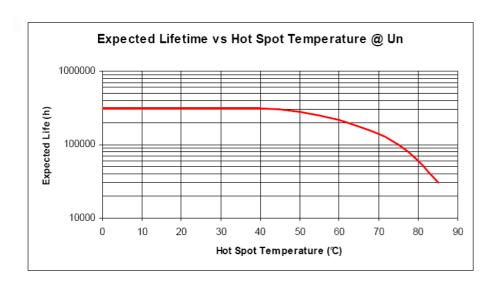

SELF-HEALING CURRENT

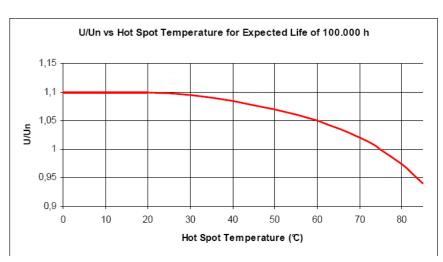


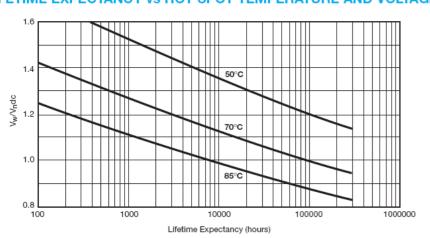


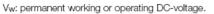

COMPARISON METALLISED / FOIL TECHNOLOGY

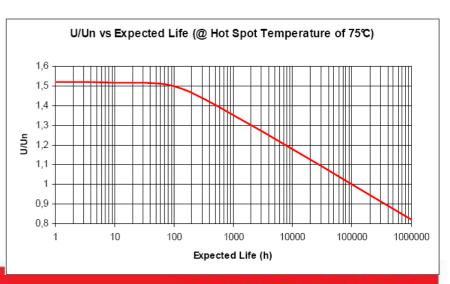
END OF LIFE



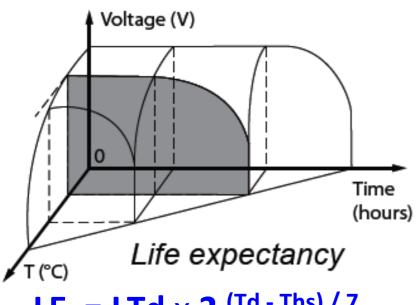





LIFE EXPECTANCY



LIFETIME EXPECTANCY vs HOT SPOT TEMPERATURE AND VOLTAGE



WWW.LETDO-ELEC.COM

Derating Formulas

 $LE = LN \times (VN / V)^8$

LE = Life expectancy at operating V

LN = Life expectancy at nominal voltage

VN = Nominal voltage Un (V)

V = Operating voltage (V)

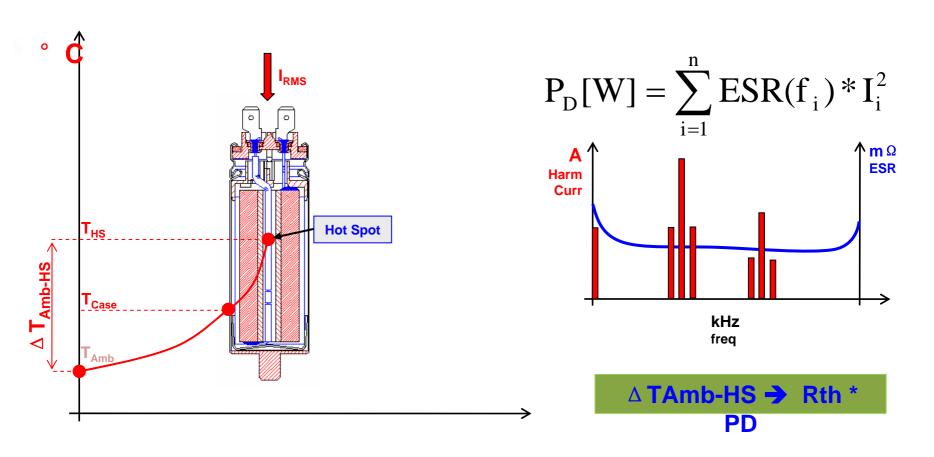
 $LE = LTd \times 2^{(Td - Ths)/7}$

LE = Life expectancy at operational Hot Spot temperature Ths

LTd = Designed Life expectancy at T hot spot = Td

Td = "Design" Hot Spot temperature

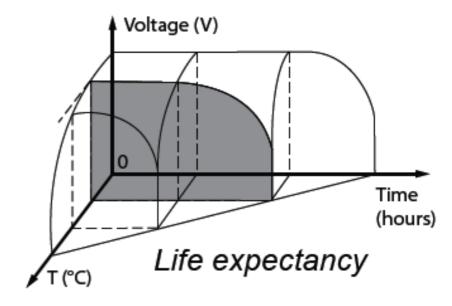
Ths = Operational Hot Spot


7= Arrhenius coefficient

Exampe: capacitor designed to live 100kh with an hot spot of 85° C – if the calculated operational hot spot temperature is different the formula should be applied

Hot Spot Definition

The hot spot is the internal point of the capacitor where the temperature reaches its maximum value. The hot spot temperature is always depending on the ambient temperature and on the internal overheating generated by the Irms



Usage Limitation for Derating Formulas

- The hot spot temperature cannot anyway exceed the
 Max temperature that the base film is declared for
- The operating voltage cannot widely exceed the nominal voltage since a too high voltage would cause the dielectric break down
- The formulas can be applied only in case of limited variation from the rated values of Voltage and Temperature. A gap too big could not be verified with any reasonable accelerated test

Example: if I get as a result an expected life of 1M h, with the typical endurance test I should put in test the capacitors for 100kh!!

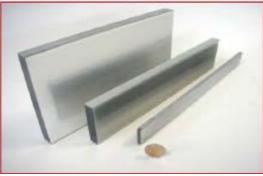
Calculate Hot Spot

HOT SPOT CALCULATION

```
\begin{array}{ll} \theta_{hot \; spot} = \theta_{ambient} + (P_d + P_t) \; x \; R_{th} \\ with \quad P_d \; (Dielectric \; losses) = Q \; x \; tg\delta_0 \\ \qquad \Rightarrow [\; \% \; x \; C_n \; x \; (V_{peak} \; to \; peak)^2 \; x \; f \; ] \; x \; (2 \; x \; 10^{-4}) \\ P_t \; (Thermal \; losses) = R_s \; x \; (I_{rms})^2 \\ where \qquad C_n \; in \; Farad \qquad I_{rms} \; in \; Ampere \qquad f \; in \; Hertz \\ V \; in \; Volt \qquad R_s \; in \; Ohm \qquad \theta \; in \; ^{\circ}C \\ R_{th} \; in \; ^{\circ}C/W \end{array}
```


Winding Technology

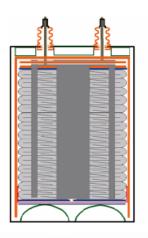
Standard Round

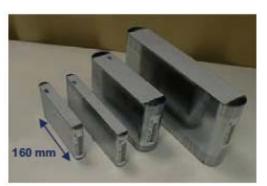

Concentric Round

Customized Round

Standard Plat

Standard Stack

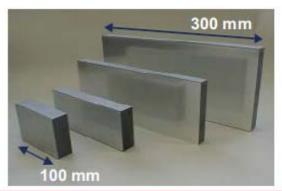

Customized Stack



Winding Technology

Plat Winding Technology Advantage

Diversification configuration
Good Self-healing property
Good volume Fill Factor
High Ripple Current
Low ESL
Impregnation Technology: Oil;
Protective Gas; Resin

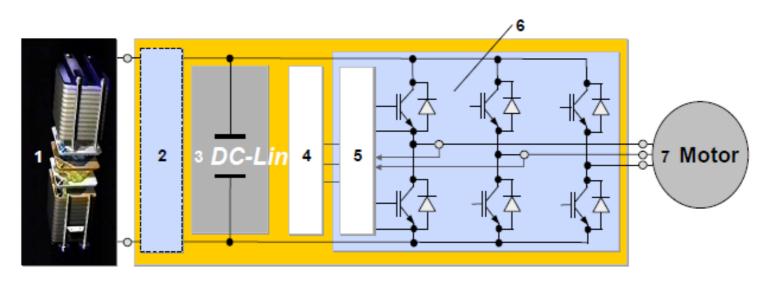


Stack Technology Advantage

Diversification configuration Good Self-healing property Good volume Fill Factor Super Thin Film Technology High Ripple Current Low ESL

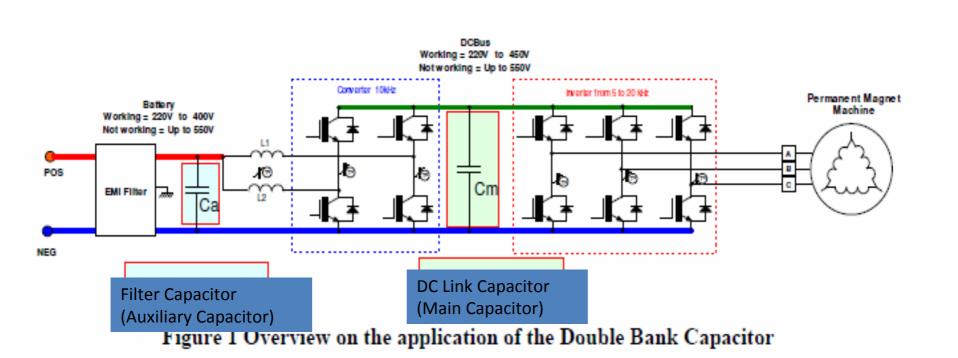
Impregnation Technology

Impregnation	Oil	Protective Gas	Resin
Product	DC-Link ; AC Filter	DC-Link	Snubber cap; DC-Link;AC filter
Voltage VDC	Typical>1500	Typical>1600	Typical<1200
Weight	High	Low	Medium
Total Fire Load	Highest	Lowest	Medium
Cooling	Best	Normal	Good
Hotspot	10k Less than gas	Reference	Lower Compared to gas
Losses	Improved heat dissipation	Reference	Good heat dissipation
Lifetime	Longer at the same film thickness	Reference	Reference
△C/C %	Smaller,film protected from corona effect	Reference	Reference
Application Application High absolute voltage and high AC Ripple load High ambient temperature and high currents		Mainly DC load, Low AC Rate,Low ambient Temperatre	Lower voltage



Impregnation Technology

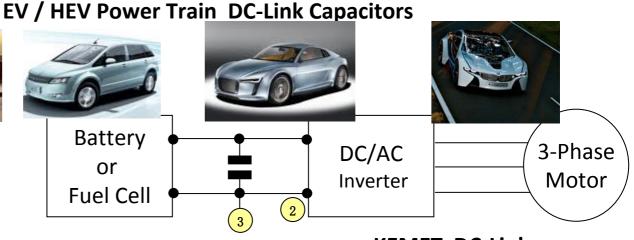
Technical Characterisitics	Property		
Resin Impregnated	High Capacitance		
Gas impregnation	Low Weight, low risk of the fire		
Oil impregnation	Heavy duty		
Film metallization design	Very good self-healing capability		
intergrated winding protection	Good overload capability		
Custoized housing	Optimized mechanical adaptation		
Stainless- steel casing	Pressure stable		
Overpressure protection	Optional safety feature		
Overpressure disconnector	Available upon request		

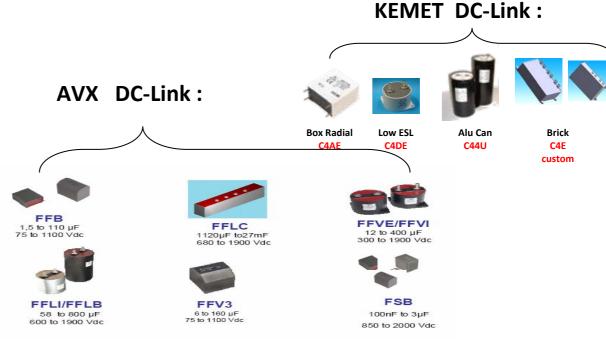

Topology Of HEV Converter

- 1 Fuel Cell or HV-Battery
- 2 EMC Filter
- 3 DC-Link function with integrate bus bar
- 4 Drive control bus interface
- 5 Monitoring & Pretection gate driver
- 6 IGBT bridge with integrated cooling & sensors

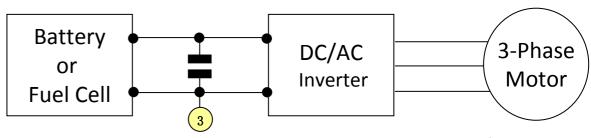
DC Link & Filter Capacitors Hybrid and Electric Vehicles

LETDOELECTRONICS 雷度电子




Advantages:

- High ripple life 20 khours
- High voltage
- Large capacitance / Brick
- High operating temperature
- High switching frequencies
- Low ESR, Low ESL


Typical Designs:

- Cap: 100 to 2000 uF
- Voltage: 450 to 1300Vdc

3-phase IGBT inverter

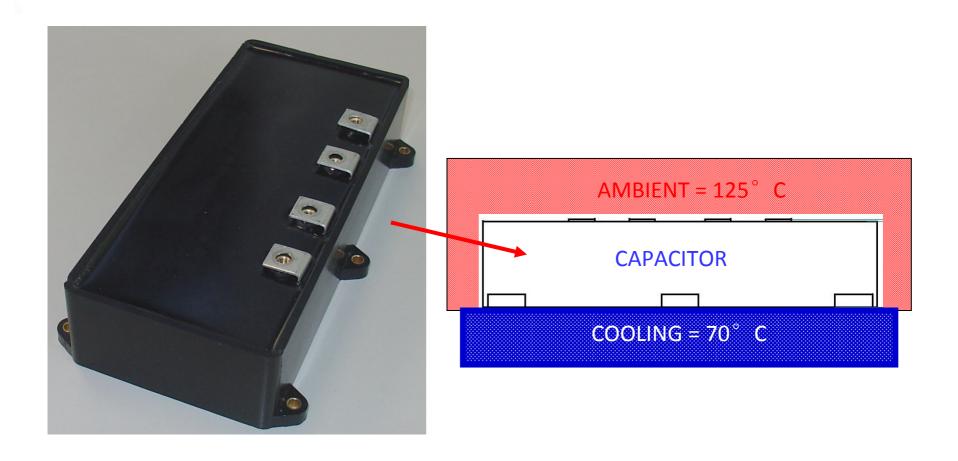
IGBT SKAI2

- 600 V up to 150 kVA
- 1200 V up to 230 kVA. automotive qualification EMI filters
- Liquid cooling

DC link capacitor

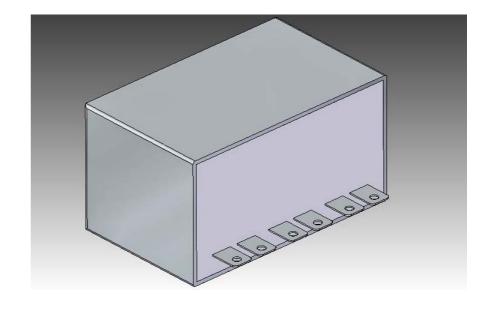
asynchronous or synchronous

Capacitor Solution: C4E Brick
- Capacitance: 1000uF / 900V



HEV Automotive DC-Link Brick

Automotive DC-Link Capacitors Heat Dissipators, Soft Winding



Standart Hybrid pack

Infineon HP2 module

Semikron SKAI2 module

Film or Electrolytic Power Solutions Design Parameter Information

Film:

- Capacitance & tolerance
- Voltages: nominal, peak, surge
- Operating ambient temperature range
- ESR, ESL
- Ripple current: continuous / max
- Peak current, dv/dt
- Life expectancy
- Thermal design: cooling/airflow/heatsink
- Mechanical design: size, terminations box, alu-can, brick
- Specification and / or competitor part number

Aluminum Electrolytic:

- Capacitance & tolerance
- Voltages: Operating, surge
- Operating ambient temperature range
- ESR
- Ripple current spectrum at associated frequencies
- Capacitor bank configuration (# in series by # in parallel)
- Life expectancy & end of life criteria
- Thermal design cooling, airflow, heatsink
- Mechanical design: size, terminations, plain / stud can, sleeving
- Specification and / or competitor part number

Thank you very much!

Andychen

chenzm@letdo-elec.com
13823117002

