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Introduction

This application note introduces a universal input,
off−line buck−boost converter with inherent power factor
correction (PFC) for driving constant current LED lighting
applications. The converter is intended for series string LED
applications where currents up to 100 mA are required with
series forward voltage drops from 35 to 120 Vdc. LED
applications include strip lighting, linear fluorescent
replacements, and wall packs where AC line−to−output
isolation is not required. The circuit design is also
compatible with most existing triac dimmers and is
applicable for power levels up to about 8 W maximum,
depending on the output voltage and current combinations.
The maximum open circuit output voltage is easily
adjustable as well as the output current. The buck−boost
circuit is designed around ON Semiconductor’s NCP1014
series of monolithic switcher ICs and provides a very simple
and low cost approach to LED lighting applications. The
buck−boost inductor is also available as an off−the−shelf
component.

Basic Circuit Operation
The NCP1014 buck−boost converter circuit is shown in

Figure 1 and is configured for a 65 mA output with a Vf
maximum of 80 V with the open circuit output clamped at
about 90 V. The output current is set by current sense resistor
R10 (Iout = 0.95/R10). The forward voltage drop of the photo
diode in optocoupler U2 provides the effective reference
voltage for current sensing.

The output current can be trimmed upward with R14. Vout
max is set by the total series Zener diode voltage of Z1 + Z2
+ Z3 + 1 V. R16 is for discharging output caps C9A/B when
the converter is off and provides a pre−load which helps set
the minimum dimness level when triac dimming is used.

The buck−boost converter is configured around
monolithic controller U1 (NCP1014), rectifier D5, inductor
L3 and output capacitors C9A and C9B. The inductor L3 is
operated in continuous conduction mode (CCM) to
minimize the peak−to−average current ratio and to
maximize overall circuit efficiency. Efficiency curves for
various output Vf values and for both nominal line voltages
are shown in Figure 2 below.
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Notes:

1. Vout max set by Z2+ Z3 + Z4 (Vout = Vz + 1V)
2. I out max set by R10 (Iout = 0.95/R10); Imax = 100 mA
3.  R14 is for trimming Iout (optional).
4. L1, L2, L4 are Wurth WE−TI 7447462102 or similar (1 mH).
5. L3 is Wurth part # WE−PD 7447709332 (or equivalent 3.3 mH inductor).
6. U1 should be heatsunk via ground tab (pin 4) to copper clad area.
7. Crossed schematic lines are not connected.
8. Thick lines are recommended ground plane/heatsink area.
9. For non−triac dimming applications R4, R5, R6, R7, R8, C3, C4, C5, Z1, Q1,
    and Q2 can be omitted. D6 can be replaced with a zero ohm resistor.
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Figure 1. Buck−Boost Schematic

Efficiency vs Vf @ 65 mA Output
(L = 3.3 mH, 4 ohm, Cout  = 100 uF)

70

75

80

85

35 40 45 50 55 60 65 70 75 80 85

LED String Vf

E
ff

ic
ie

n
cy  Effic @ 120

Vac

Effic @ 230Vac

Figure 2. Efficiency versus Output Vf

The converter input circuit employs a conducted EMI
filter comprised of L1, L2, L4, and C1. This filter is adequate
for meeting FCC level B for conducted emissions as shown

in the green plot (average) of Figure 3. This is for the
maximum rated output current of 100 mA.



AND9043/D

http://onsemi.com
3

Add 470u+5K7

EN 55022; Class B Conducted, Quasi−Peak

EN 55022; Class B Conducted, Average

470u+5K7 Average

−20

−10

0

10

20

30

40

50

60

70

80

1 10

dBuV Pixie BB Rev8 100mA 60V
115Vac

11/16/2010 1:12:03 PM (Start = 0.15, Stop = 30.00) MHz

Figure 3. Conducted EMI for 100 mA with Vf = 60 Vdc (Green = Average; Orange = Peak)

By utilizing minimal input bulk capacity for C2, and low
capacitance values for EMI “X” cap C1, relatively high
power factor is achieved by switching the converter directly
from the full−wave rectified line voltage. The unity gain

bandwidth of the converter feedback loop is also set below
40 Hz via C7 and this also improves the through−put power
factor. The power factor versus Vf for both nominal line
voltages is shown in Figure 4 below:

PF vs Load Vf @ 65 mA Output
(Cout = 100 uF)
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Figure 4. Power Factor versus LED Vf

Despite the simple, relatively low gain current sense and
feedback design, current regulation over the typical Vf
range is better than 4% as shown in Figure 5.
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Load Regulation vs Vf
(Closed Loop with Cout = 100 uF)
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Figure 5. Current Regulation versus Vf

The 120 Hz output current ripple for 100 mA into an LED
load with two 47 �F output capacitors in parallel (C9A/B)
is shown in Figure 6. The output current ripple for a single
output capacitor of 47 �F is shown in Figure 7. The scale is
50 mA per division vertically. The current ripple amplitude
is dependent on the amount of filter capacity on the
converter’s output, since the slow feedback loop causes this
ripple to pass directly through the converter. It should be
noted that the power factor and current regulation will
degrade with decreasing output capacity. A minimum output
capacity of about 47 �F (peak−to−peak ripple = 30% max)
was found to be adequate for most applications up to
100 mA output current.

Figure 6. Output Current Ripple with Cout = 94 uF
and LED Load = 100 mA (Vf = 65 Vdc)

Figure 7. Output Current Ripple with Cout = 47 �F and
LED Load = 100 mA

Inductor Selection
The buck−boost inductor was selected for continuous

conduction mode (CCM) operation so as to minimize the
peak−to−average current ratio in the converter and make
maximum use of the current capability of the NCP1014’s
internal MOSFET. In addition, it was desired to use an
off−the−shelf available inductor so as to avoid the expense
of custom made inductors. As such, a commercially
available inductor from Wurth Electronik with a nominal
inductance of 3.3 mH and a dc resistance of about 4 � was
selected and appeared adequate for the application. It should
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be noted that a custom made inductor with lower dc
resistance would improve the overall efficiency; however,
the cost would also probably increase. The minimum
required inductance for CCM operation can be determined
as follows:

The minimum lower tolerance on the MOSFET current
limit level in the NCP1014 is 400 mA. For CCM operation
let’s figure on the inductor magnetizing current being no
more than 50% of this amount, or 200 mA. Assuming a
minimum nominal ac input of 90 Vac, this translates to
120 Vdc peak. Now, since we are not using a bulk input
capacitance that can charge to peak, the average value of the
input is 60 Vdc. Assuming a typical output voltage Vf (in
this example) of 60 V and the fact that the transfer function
for a CCM buck−boost is Vin/Vout = D/(1−D) where D is the
duty ratio, we can solve for D to determine the average
on−time of the MOSFET at low ac input:

D/(1−D) = Vin/Vout = 60 V/60 V = 1, so solving for
D we get D = 0.5

So, for a 100 kHz switching frequency the average
on−time will be 5 �s. From this we can now calculate a
minimum inductance value:

L = Vpk x dt/dI = 120 x 5 �s/0.2 A = 3000 �H

where Vpk is the peak voltage across the inductor at low line
and dI is the maximum selected peak−to−peak value of the
choke magnetizing current. Since 3.3 mH is a common
value, this was selected.

Triac Dimming
Triac dimming is possible with this buck−boost circuit as

long as the triac holding current is low enough for stable
operation at the lowest desired dimming current. One
advantage of this circuit implementation that helps stability
during dimming is the fact that the NCP1014 utilizes current
mode control. This control approach does deteriorate the
power factor somewhat since it attempts to instantaneously
control the 120 Hz output ripple by adjusting the duty ratio,
however, this effect also tends to shape the line current as a
trapezoidal waveform. With a trapezoidal current
waveform, the trailing edge at the end of a line cycle is still
relatively high as opposed to the sinusoidal “tail−off” typical
of a normal sine wave. The fact that the current remains high
at the end of the half−cycle current pulse helps to maintain
the triac holding current for the very short conduction angles
necessary for low level dimming. Figures 8 and 9 show the
120 Vac input line current (yellow) and voltage (blue)
during dimming for conduction angles of 100° and 22°
respectively.

Figure 8. Line Current and Voltage − Triac
Conduction Angle of 100�

Figure 9. Line Current and Voltage − Conduction
Angle of 22�

Referring to the schematic in Figure 1, the input current
limiting resistor R1 and the damping network of R4 and C3
help to nullify the capacitive loading effects that the
converter presents to the triac at its initial turn−on. The
inhibit circuit composed of Q1 and Q2 monitors the line
voltage and inhibits U1 via the feedback pin when the line
voltage is below approximately 15 V during triac dimming.
Diode D6 prevents discharge of the frequency compensation
capacitor C7 during the triac zero conduction periods. This
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circuitry enhances the stability and performance of the
converter when triac dimming is utilized. For applications
where dimming is not required, the components of the
inhibit circuit can be omitted and D6 replaced with a zero
ohm resistor. Depending on the triac dimmer circuit
characteristics, it may be necessary to adjust the resistance

of the output pre−load resistor R16 to set the minimum
desired dimness at minimum triac phase angle.

Figure 10 shows the converter output current versus line
phase angle for the 120 Vac Leviton Sureslide and Rotary
triac line dimmers (65 mA max, 60 Vf LED load).

Output Current (mA) vs Triac Phase Angle
(Note: R16 preload = 47K)
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Figure 10. Converter Output Current versus Triac Phase Angle
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