Review of the Solar Cells Based on IGS Film

by Guobin Zhang 16/10/2008

基于CIGS薄膜的太阳能电池综述

- >薄膜太阳能电池概况
- >太阳能电池原理
- ▶基于CIGS薄膜的太阳能电池 特点 结构 制备方法
- ▶挑战&探索 研究的具体方向

CIGS [Cu (In, Ga) Se2]

薄膜太阳能电池概况

DOE National Lab module research balances various materials thru joint industry R&D and long-term research

Organic PV

Customizing organic molecules for optimal cell efficiency in materials that can be processed without expensive vacuum chambers

Dye Sensitized Cells

Advancing the efficiency and stability of inexpensive dye-based solar cells with novel nanostructures

Wafer Silicon

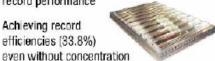
Combining thin amorphous and wafer silicon to make high efficiency cells with smaller total amounts of silicon

Developing new ink-jet printing methods for silicon electrical contacts

Thin Films (CIGS)

Supporting the novel manufacture of CIGS cells from ink-based precursors

Transferring discovery that highest performance material has nanostruc-


tured patterns into a fast and uniform manufacturing process

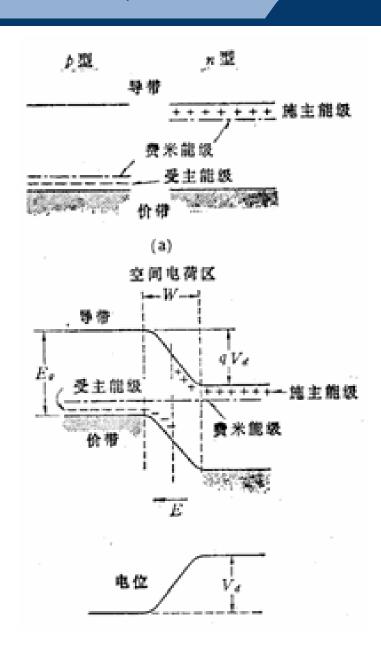
Concentrator PV

Devising strategies for making guicker. easier, less precise cells but maintaining record performance

Achieving record efficiencies (33.8%)

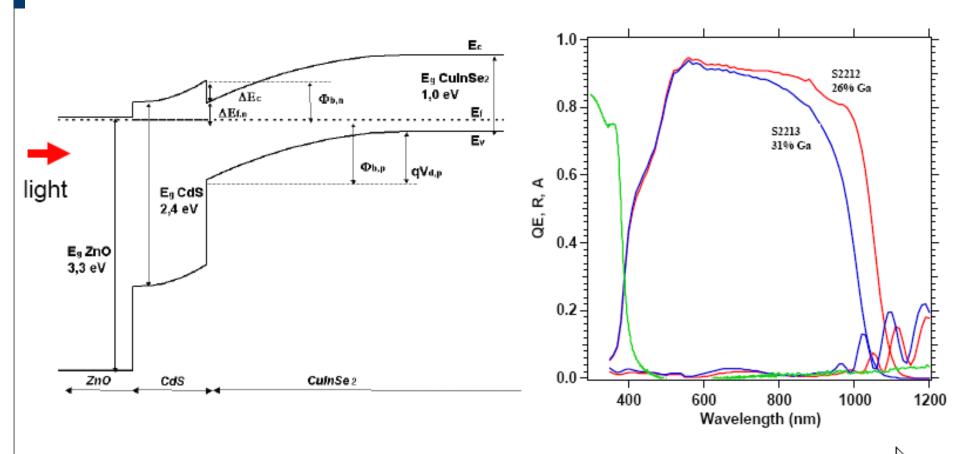
Thin Films (CdTe)

Produced thinner films with same cell performance


Discovered a more durable way to make electrical contacts

Developing methods of making thin silicon film solar cells on inexpensive glass and at low processing temperatures

人太阳能电池原理

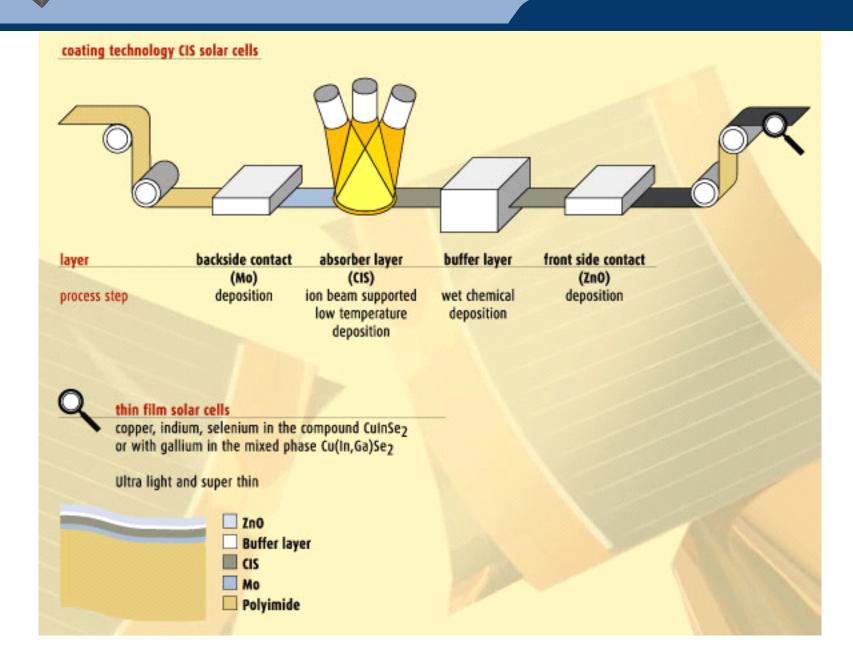


> 光生伏特效应

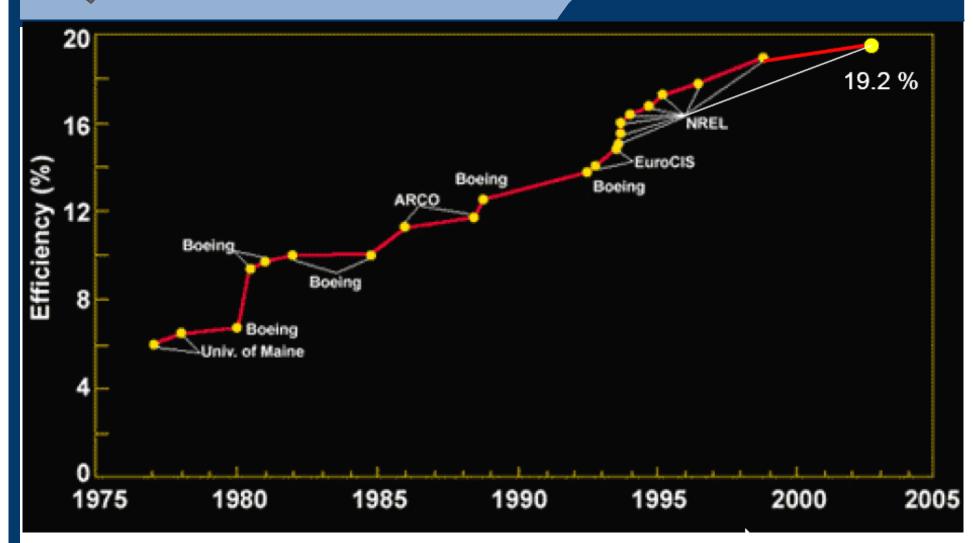
当用适当波长的光照射非均匀半导体(p-n 结等)时,由于内建电场的作用(不加外电 场),半导体内部产生电动势(光生电 压);如将p-n结短路,则会出现电流(光生 电流)。这种由内建电场引起的光电效应, 称为光生伏特效应。光生伏特效应是光电池 的基本原理。

CIGS 太阳能电池能带图及光电流产

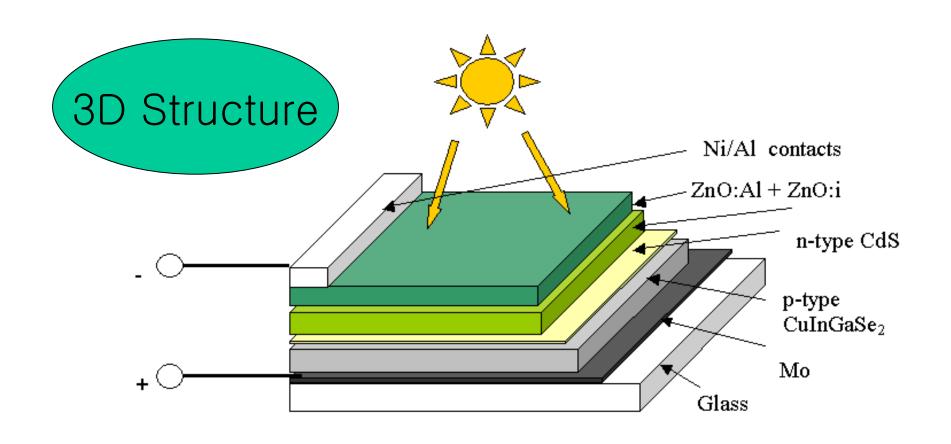
牛机理

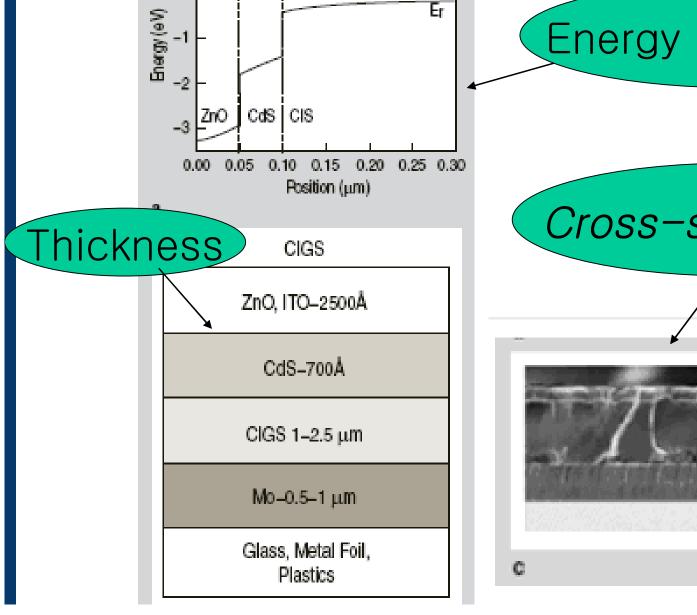

By Courtesy of Dr. K. Ramanathan et al., RREL, EMRS 2004

影响太阳能电池的因素


- 禁带宽度
- 复合寿命
- 光强
- 串联电阻
- 金属栅和反射光

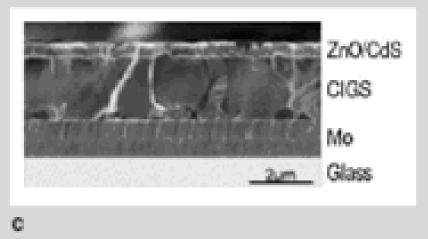
CIGS电池生产的工艺流程


40 years Rearch: Trails, Errors, Success!

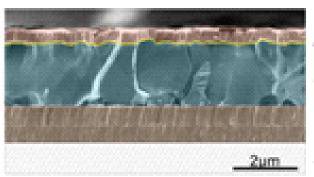

FROM: Web Site of National Renewable Energy Lab

典型结构(Typical Structure)

FROM: Materials Challenges for Terrestrial Thin-Film Photovoltaics Alvin D. Compaan



EFn


EFo

Energy level digram

Cross-section SEM

ZnO/CdS CIGS

Мо

Glass

CIGS

ZnO, ITO - 2500 Å

CdS - 700 Å

CIGS 1-2.5 µm

Mo - 0.5-1 µm

Glass, Metal Foil, Plastics

一种底 (Substrate)

- >低的离子浓度
- >优良的导热性
- ▶热膨胀系数: 稍大于CIGS膜
- ▶Na离子的含量控制

▶金属Mo是CIGS薄膜太阳电池背接触层的最佳选择

良好的电特性、与玻璃接近的热膨胀系数

与衬底良好的附着性、无化学反应

▶用溅射双层Mo的效果比较好。高压强Ar 下溅射0.1um,然后在低气压下再溅射0.9um.

●直接禁带半导体: 1.04eV

Adjusted by rati of Ga/(In+Ga)
1.04~1.65eV

梯度带隙半导体、"V"字型带隙分布

- ●很高的吸收系数: 105---106/cm Highest
- ●CIGS吸收层厚度只需1.5-2.5μm,整个电池的厚

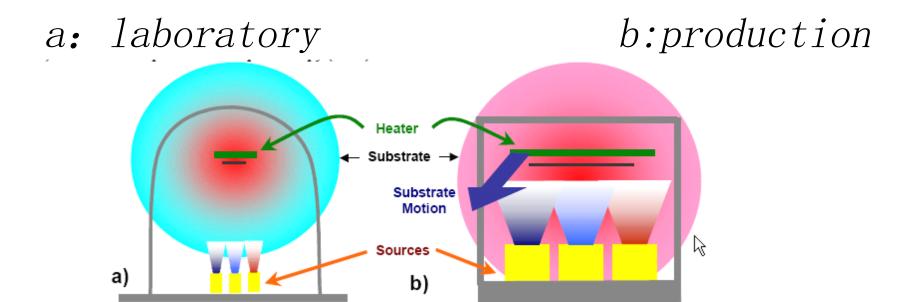
度为5-6μm 节省原材料

●无光致衰退效应(S-W Effection)

一 吸收层CIGS薄膜的生长方法

- ▶溅射+硒化法
- ▶ 共蒸发: 3-Stage Process

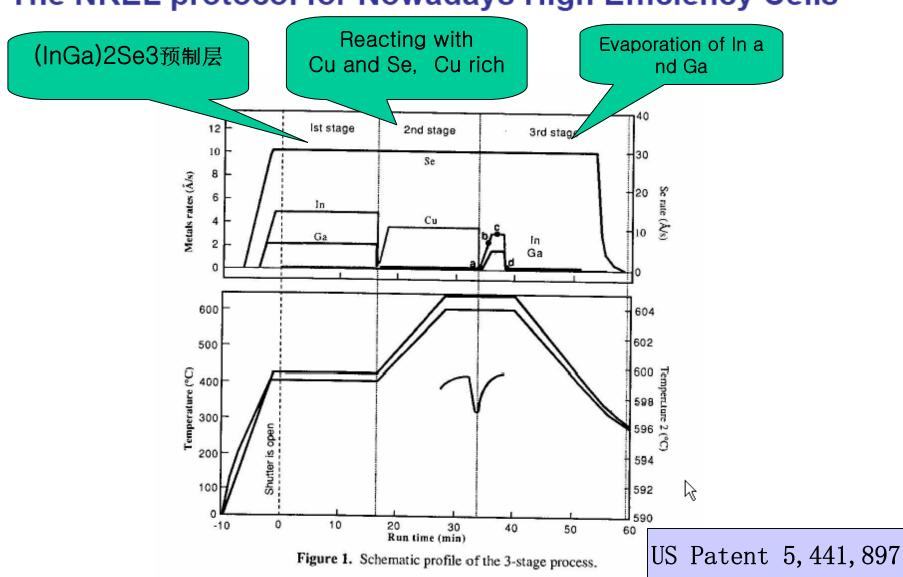
Highest Eff., by NREI


▶电化学沉积

Large area, Low cost

- ▶化学水浴沉积(CBD)
- ➤旋涂 (Screen Printing)

Expected Champion Low Cost



FROM: June 2003 • NREL/SR-520-34314
Tolerance of Three-Stage CIGS Deposition to Variations Imposed by Roll-to-Roll Processing

The NREL protocol for Nowadays High Efficiency Cells

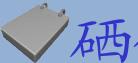
Properties of 19.2% Efficiency ZnO/CdS/CuInGaSe2/Thin-film Solar Cells

PARAMETER

By NREL, 2003

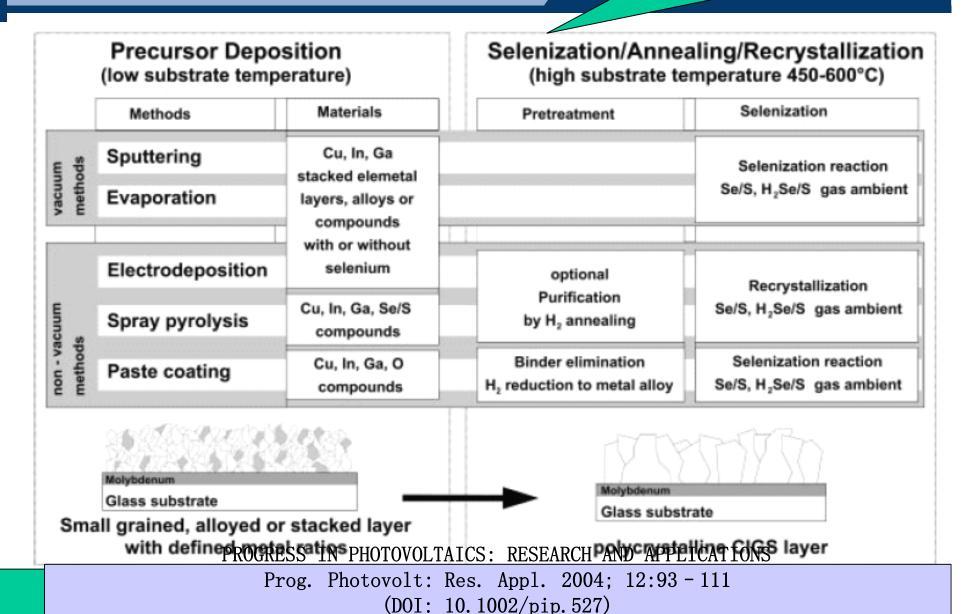
Sample	Device	V_{∞} (V)	$J_{\rm sc}~({\rm mA/cm}^2)$	Fill factor (%)	Efficiency (%)	Remarks
S2051A1	1	0.689	35-71	78-12	19-2	New record
	2	0.685	35-68	77.91	19-1	
	3	0.680	36-11	77-64	19-1	
C1068-2		0.678	35-22	78-65	18-8	Previous record

FROM: PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS

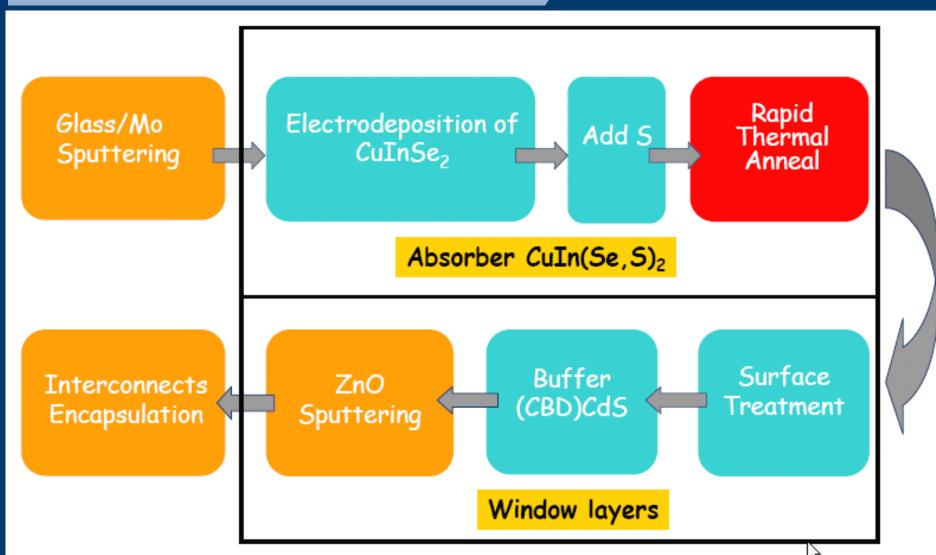

Prog. Photovolt: Res. Appl. 2003; 11:225 - 230 (DOI: 10.1002/pip.494)

The highest eff.

Ga-poor, In-rich


	Device	Area	η	Voc	FF	J _{sc}	Official	
	Name	(cm²)	(%)	(mV)	(%)	(mA/ cm²)	Measure ment?	
		0.419	19.9	690	81.2	35.4	Yes	
19.9		0.416	19.9	697	80.0	35.7	Reduce	Recombinati
By NREL, May	7, 2008	0.417	19.8	714	79.1	35.1	Yes	
	M295 11#4	0.419	19.7	690	81.2	35.1	Yes	
	M2992- 11#6	0.419	19.7	690	81.1	35.3	Yes	
	C2183- 12#4	0.417	19.7	695	80.0	35.5	Yes	
	C2200- 22#1	0.420	19.6	725	80.6	33.6	No	
	C2213-	0.994	19.2	716	80.4	33.4	Yes	

From: Characterization of 19.9%-Efficient CIGS Absorbers


V硒化法 (Selniza

H2Se剧毒,易挥发

11.4%

The processes are "mastered" for 5x5 cm2 and 30x30 cm2

电化学沉积原理

$$\begin{split} & \text{Cu}^{2+} + 2\text{e} \Leftrightarrow \text{Cu} \\ & \text{E} = 0.34 + 0.0295 \log \left(\alpha_{\text{Cu}}^{2+} / \alpha_{\text{Cu}} \right) \\ & \text{In}^{3+} + 3\text{e} \Leftrightarrow \text{In} \\ & \text{E} = -0.34 + 0.0197 \log \left(\alpha_{\text{In}}^{3+} / \alpha_{\text{In}} \right) \\ & \text{Ga}^{3+} + 3\text{e} \Leftrightarrow \text{Ga} \\ & \text{E} = -0.56 + 0.0197 \log \left(\alpha_{\text{Ga}}^{3+} / \alpha_{\text{Ca}} \right) \\ & \text{HSeO}_2^+ + 4\text{H}^+ + 4\text{e}^- + \text{OH}^- \Leftrightarrow \text{H}_2\text{SeO}_3 + 4\text{H}^+ \\ & + 4\text{e}^- \Leftrightarrow \text{Se} + 3\text{H}_2\text{O} \\ & \text{E} = 0.74 + 0.0148 \log (\alpha_{\text{HSeO}2}^+ / \alpha_{\text{Se}}) - 0.0443 \text{pH}) \end{split}$$

FROM: J MATER SCI 41 (2006) 1875 - 1878

电化学沉积 (Example)

- 实验装置: a Potenciostat/Galvanostat EG&G Princeton Ap plied Research model 263, which was coupled to a PC,50ml single compartment cell;
- 工作电极: ITO on glass, aluminum, 304 steel;
- 反电极: Pt bar;
- 参比电极: saturated Ag/AgCl(KCl saturated);
- 电解液: prepared with ultrapure water (18 MΩ) and the Reagents were of analytic grade.
- 电解媒质: 0.6M nitric acid+0.3 M dietilelentria mine; 3 mM Cu(NO3)2, 3mM In(NO3)3, and 5mM SeO2.

电化学沉积 (Example)

- PH值: adjusted to 8.5, using HNO3 and NaOH;
- 祛氧气: bubbling argon gas for 5 min;

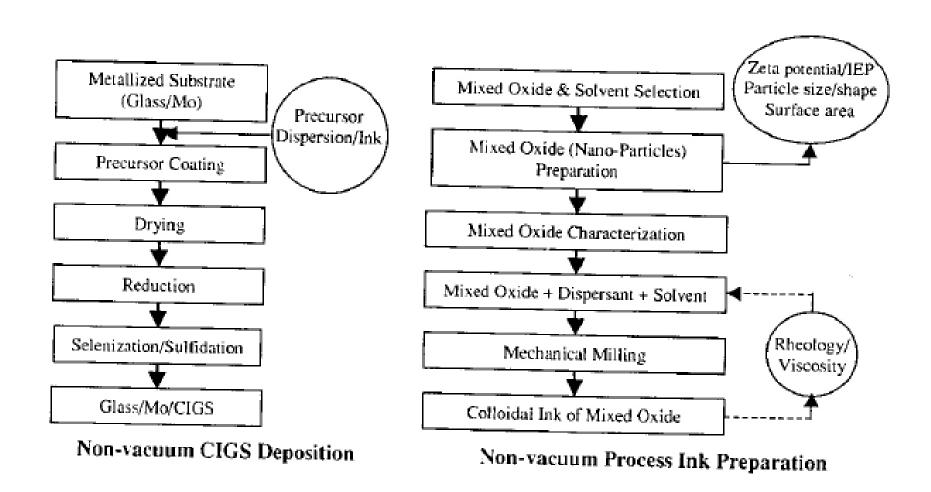
From: J Solid State Electrochem (2007) 11:407 - 412 DOI 10.1007/s10008-006-0162-7

♥电化学沉积 (Example)

- · 工作电极:镀有Mo层的钠钙玻璃衬底;
- 反电极: Pt;
- 参比电极: 饱和 Ag/AgCl(KCl saturated);
- 电解媒质: CuC12、InC13、GaC12、H2SeO3;
- PH值:调节为 1.5, using HC1(volume10%);
- 温度: 水浴温度25℃;
- 祛氧气: bubbling argon gas for 5 min;
- · 共沉积过程反应条件: 饱和甘汞电极(SCE)应用电势范围-0.6到-0.8V, 沉积时间60min;

不同反应浓度下的CIGS组分比

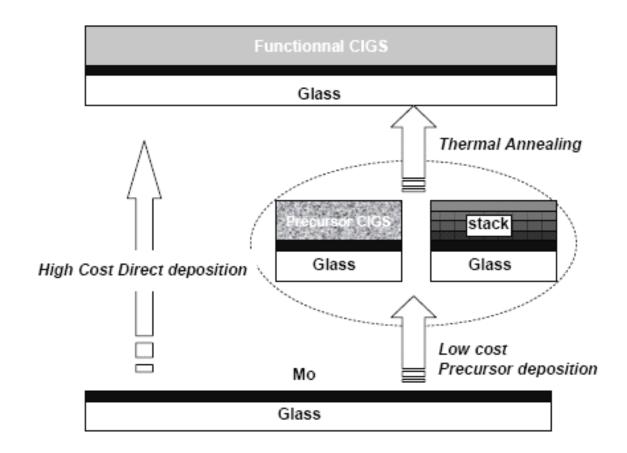
Sample no	Bath concentration/mM				Composition/(at%)					
	CuCl ₂	InCl ₃	GaCl ₃	H ₂ SeO ₃	Cu	In	Ga	Se	Cu/(In+Ga)	Ga/(In+Ga)
a	2.5	50	65	15	13.65	23.85	7.70	54.80	0.43	0.24
b	3.0	45	65	15	21.92	18.20	7.76	52.12	0.84	0.30
c	5.0	50	70	10	27.21	20.72	9.77	42.30	0.89	0.32
d	2.5	45	70	10	13.27	17.19	9.69	59.25	0.48	0.35


目前最高效率电池Ga的含量是30%Ga/(In+Ga), 此时带隙大约为1.12ev

FROM: J MATER SCI 41 (2006) 1875 - 1878

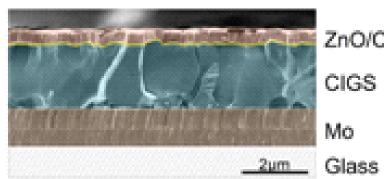
低成本制备CIGS太阳能电池的方法

Screen Printing



低成本制备CIGS太阳能电池的方法

From the 3 stage process to Multistep Processes


......A new consequence of CIGS « Softness »

/缓冲层CdS (Baffer laver)

ZnO/CdS CIGS Mo

CIGS ZnO, ITO - 2500 Å CdS-700 Å CIGS 1-2.5 µm Mo-0.5-1 µm Glass, Metal Foil, Plastics

CdS的制备方法: CBD (Chemical Bath Depositon)

- 原理: 原理是在去离子水配制的溶液中和的反应;
- 反应试剂: CdC12、硫脲(SC(NH2)2)、triethy nolamine(TEA)、氨水(可以调节溶液的PH值),
 CdC12与硫脲质量之比为1:1;
- 薄膜沉积温度: 60~90℃, PH值: PH值范围是9~11, 衬底是垂直放置在水浴溶液中的, 时间为30min;

CdS thin films from two different chemical baths—structural and optical Analysis Journal of Crystal Growth 285 (2005) 41 - 48

CdS的制备方法: CBD (Chemical Bath depositon)

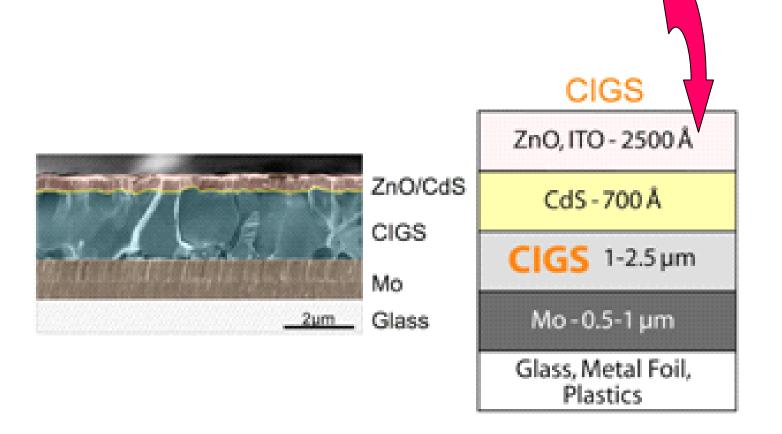
- 原理: 原理是在去离子水配制的溶液中和的反应;
- 反应试剂: CdC12、硫脲(SC(NH2)2)、triethy nolamine(TEA)、氨水(可以调节溶液的PH值),
 CdC12与硫脲质量之比为1:1;
- 薄膜沉积温度: 60~90℃, PH值: PH值范围是9~11, 衬底是垂直放置在水浴溶液中的, 时间为30min;

CdS thin films from two different chemical baths—structural and optical Analysis Journal of Crystal Growth 285 (2005) 41 - 48

Possible Reasons for CdS Alternatives

(1) Basic Performance.

Higher current from improved blue photon collection (generally realized), while maintaining equal voltage (generally not realized).


- (2) Conduction-Band Offset Considerations
 - (a) Better match to CIS, especially when no blue photons present (current issue). (b) Better match to wide band-gap CIGS (voltage issue).

FROM: CIS Team Meeting

Alternative Junctions Subteam Report by Jim Sites

TCO (Transprent Conducting Oxide)

• High Conductivity and Transparency

目标

• 减少原材料的使用量,降低成本

• 提高光电转换效率

热点一

CIGS电池的理论研究

一结构方面

采用第一性原理(First Principle)的计算,如CIGS各种化合物的形成能。CIGS四元相图的标定。

电学特性

CIGS材料中点缺陷的研究(近百种电学缺陷),P-N异质结的理论分析。CIGS电池的亚稳特性等。

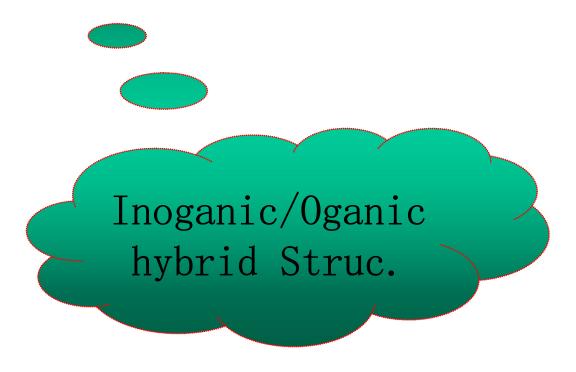
少当前研究方向

热点二

Cd-free缓冲层的探索

Cd-free缓冲层的探索

●用ZnS、InS等材料替代CdS


Buffer Layer	<u>Efficiency</u>		
CdS	19.5% (2004)		
ZnS(O,OH)	18.6% (2003)		
InS(O,OH)	16.2% (2003)		
Cd-PE	15.7% (2003)		
ZnO	15.0% (1999)		
ZnIn ₂ Se ₄	14.5% (1998)		
ZnSe	14.2% (2000)		

FROM: 1 March 8, 2005 Alternative Junctions Subteam Alternative

Junctions Subteam Report by Jim Sites

可以尝试用有机材料做缓冲层

热点三

Na在CIGS吸收层中的作用机理

实验验证 理论模型

Increased ~50%!

ble I: Device performance parameters of the matched CIGS devices with and without I

Cell	Voc (V)	Jsc (mA)	FF (%)	Eff (%
34017.12 – 1 (Na)	0.624	32.9	74.0	15.2
34017.32 – 4 (Na-less)	0.494	33.6	64.3	10.7

From: Study of the Electronic Properties of Matched Na-containing and Na-free CIGS Samples Using Junction Capacitance Methods

Peter T. Erslev¹, Adam F. Halverson¹, J. David Cohen¹, and William N. Shafarman² ¹ Department of Physics, University of Oregon, Eugene, OR 97403 U.S.A.

² Institute of Energy Conversion, University of Delaware, Newark, DE 19716 U.S.A.

稳定性差

Va本身的迁移析出量会随玻璃原料的不同和时间而大有差异

High Eff. 的解释:

Na的存在降低了CdS/CIGS界面处的缺陷密度

From: Study of the Electronic Properties of Matched Na-containing and Na-free CIGS Samples Using Junction Capacitance Methods

柔性CIGS太阳能电池单元转换率突破17.7%

By:日本的产业技术综合研究所

少当前研究方向

热点五

In、Ga等稀有金属元素的替代

In、Ga等稀有金属元素的替代资源对电池大规模发展的制约。寻找可替代的元素也是研究热点:比如Cu2ZnSnS4等材料。

少当前研究方向

热点六

带隙梯度太阳能电池

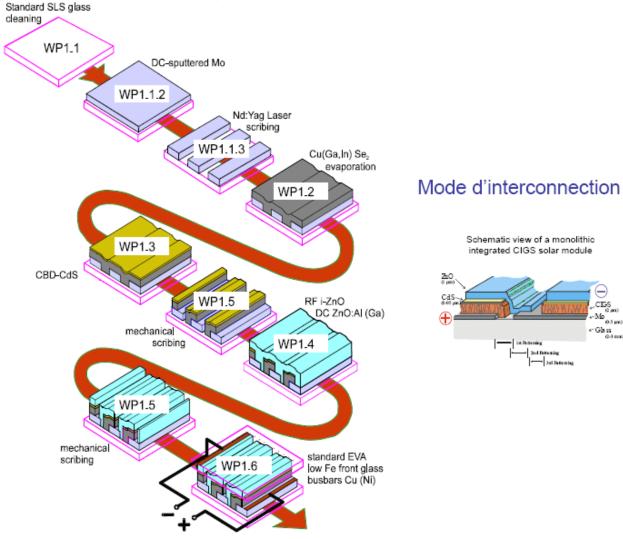
亥法及解释

在CIGS薄膜的厚度方向上形成Ga/(In+Ga)成梯度

迎光表面一侧至背电极一侧的禁带宽度梯度

扩大从红外到可见光相应光谱的范围, 同时可以使能量较高的短波光子得到有效利用

无限多结电池


50%???

FROM: Advanced Materials Industry No. 4, 2005, CIGS薄膜太阳能电池研究现状及发展前景 庄大明,张弓清华大学机械工程系薄膜实验室

展望

产业化 (Idustrialisation)

Par Courtoisie: Dr. Hans W. Schock (HMI, Berlin)

Flexible CIGS Solar Cells

Ī	公司₽	衬底₽	技术↩	效率(火)↩	面积₽	† †
	GSE₽	不锈钢↓ 30、48cm 宽∗	Roll to roll↓ 共蒸发₽	12.5 小电池↓ 10.7 组件₽	↓ 3716cm2←	↓ 2007:40MW₽
	Miasole +	不锈钢↓ 0.6-1m 宽₽	Roll to roll↓ 共溅射↩	10.52₽	2.42 cm2 ←	www.miasole.com↓ [*] 50 MW/年↩
	<u>Odersun</u> AG <i>₽</i>	铜带↓ 1cm 宽 ₽	Roll to roll↓ 电沉积,用 S₽	11↔	1cm2≠	↓ 100-400 MW/年₽
	Daystar₽	不锈钢↓ 10×10 cm2↓	Roll to roll↓ 溅射-硒化↓	16.9₽	1.1 cm2≠	ξ.
	Nanasolar ≠	Al和不锈钢 片₽	Roll to roll 印刷 纳米粒子₽	13.95↓ 14.6₽	0.47 cm2 ←	www.Nanosolar.com

						_
公司₽	衬底₽	技术₽	效率(火)↩	面积₽	‡ ‡	
ISET₽	玻璃和柔性 衬底₽	印刷纳米粒子₽	13.0 Mo, 10.4PI, 9.6 SS, 9.5 Ti, 13.6 玻璃。	0.08 cm2¢	↓ 2007,3MW <i>↔</i>	•
Scheuten₽	玻璃珠↓ 0.2mm₽	₽	5₽	0.06 mm2 <i>₽</i>	↓ 2012年,1GW/年↩	4
Solarion [,]	PI↓ 20cm 宽₽	共蒸发₽	7.5₽	1cm2€	↓ 大于 10MW₽	4
Ascent solar₽	PI∉³	Roll to roll↓ 共蒸发₽	₽	ت	2007, 0.5-1.5MW₽	4
Heliovolt∘	玻璃,金属, PI√	ē	₽	Ę.	₽.	4

公司₽	衬底₽	技术↩	效率(火)↩	面积₽	† †
Matsushita₽	不锈钢₽	Roll to roll↓ 共蒸发₽	17.1↓ 12.6₽	0.96 cm2↓ 91.1 cm2≠	₽
Flisom•	PI₽	Roll to roll↓ 共蒸发₽	14.1₽	0.595 cm2₽	ته

共蒸发是技术主流

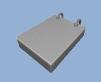
走在前列的公司/国家

Manufacturer	Capacity in MW _P /a	Substrate $(m \times m)$) Efficiency max./mea	
	CIS			
Johanna Solar, Germany	30 (2008)	0.5×1.2	-/9.4% [20]	
Würth Solar, Germany	14.8 (2007)	0.6×1.2	< 13%/11.7%	
Global Solar, USA	4.2 (2006)	metal foil 1 ft wide	10%/8%	
Showa Shell, Japan	20 (2007)	0.6×1.2	14.2%/11.8%	
Honda Soltec Co. Ltd., Japan	27 (2007/2008)	$0.8 \times 1.3 (0.2 \times 0.2)$	13%/10%	
Sulfur Cell, Germany	5 (2007/2008)	0.65×1.25	8.2%/~7%	
AVANCIS, Germany	20 (from 2008)	0.6×1.2	13.1%/12.2%	
Solibro GmbH (Q-Cells), Germany	25–30 (2009)	0.6×1.2		

国内研发情况

- · 与国外相比,国内对CIGS太阳能电池的研究研究微不足道
- 基础研究资金投入不足
- 研究单位极少
- 研究成果: 实验室最高效率记录10%

FROM: Advanced Materials Industry No. 4, 2005, CIGS薄膜太阳能电池研究现状及发展前景 庄大明,张弓 清华大学机械工程系薄膜实验室


Würth Solar (site web)

Shell (web)

50 kWp , 42,5 MWh produits par an

利用太阳能是解决能源与环境两个问题的最佳选择。

THAIK YOU!