

内容安排

- ? 10G光接口模块&测试标准
- ? 10G光接口测试需求及解决方案
- ? 10G光接口测试常见问题
- ? 86100D简介

光收发模块的发展

光接口的优点

- "高帶宽
- "传输距离远
- " 电气干扰小
- " 可靠性高
- "传输密度大

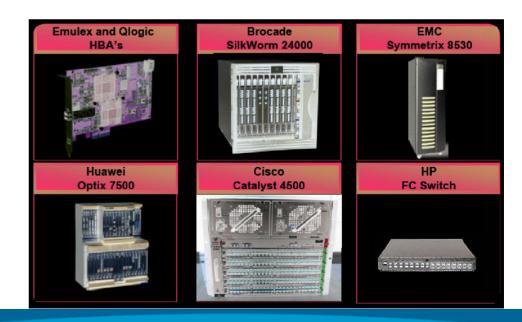
经济性 维护性 扩展性

10G光模块将进入稳定成长期

主要应用

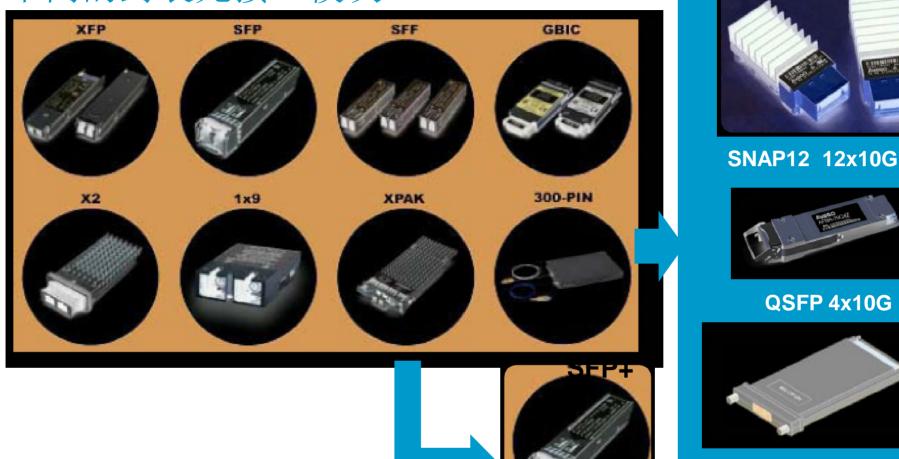
- ? 以太网交换机
- ? 存储局域网
- ? 磁盘阵列/RAID系统
- ? 主机总线适配器
- ? 高端服务器和网关
- ? 城域网中的路由器

发展方向


复杂性&多样性:多标准

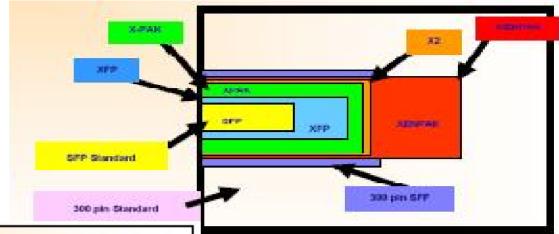
智能化:热插拔/具有数字诊断功能

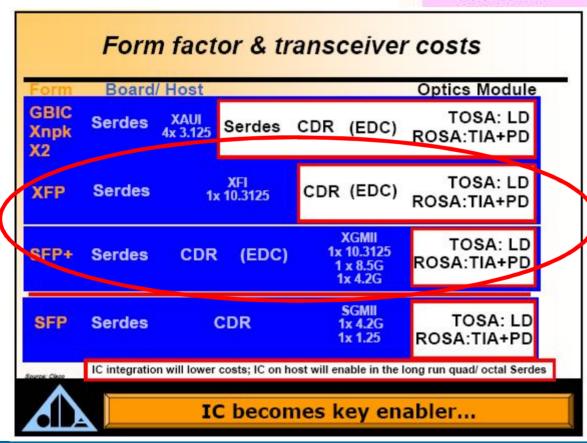
高速:>10G速率模块需求快速稳定增长


高密度:并行光器件

波长可调: DWDM应用

不同的封装光接口模块


光纤通道: 1G(1x) ⇒ 2G(2x) ⇒ 4.25G(4x) ⇒ 8.5G(8x) ⇒ 14.2G(16x) ⇒ 40G? 以太网: 1G ⇒ 10 G, next 25G? 40G? 100G?


CFP LR4 4x10G

MSA多源协议

MSA _i s	<u>协议</u>	<u>速率 (<10G)</u>	<u>速率 (>10G)</u>	<u>选件</u>	距离
SFP	光纤通道	155Mb	9.953 Gig	SR	>100m
SFP+	以太网	1.0625 Gig	10.3125 Gig	LR	>300m
QSFP	Sonet/SDH	1.25 Gig	10.519 Gig	ER	>500m
Xenpak	DWDM	2.488Gig	10.709Gig	LRM	>1km
X2	CWDM	2.5Gig	11.1Gig	Extended	> 10km
XFP		2.7Gig	11.3Gig		
300 Pin		3.125Gig			
		4.25Gig			
		5Gig			
		6.25Gig			
		8.5Gig			

比较各种封装尺寸

10Gb/s 主流产品

以太网名称如何理解

数据速率 基带 传输媒质

描述 (m):

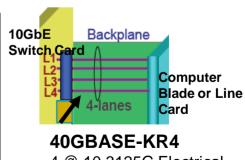
- ? S: 短波长(850nm, 多模)
- ? L: 长波长 (1310nm, 主要是单模, 少量多模)
- ? E: 扩展波长(1550nm, 单模)
- ? T: 双绞线电缆
- ? C: 同轴电缆(铜)
- ? K: 背板

描述 (n):

- ? X: 8B/10B 编码
- ? R: 64B/66B 编码
- ? W: STS-192 封装64B/66B编码(SONET)
- 第2参数:
- ? M在-LRM意味着多模
- ? 附加在最后的数字表明通道(lanes)数量, 比如-CX4,-LX4

10GE网络规范

- ? 2002, IEEE802.3ae-2002包含7个光纤标准和XAUI接口::
 - " 10GBASE-LX4: 4x3.125Gb/s, CWDM, >300m
 - " 10GBASE-ER, -LR, -SR
 - " 10GBASE-EW, -LW, -SW
 - "XAUI 接口是10G以太网连接MAC 和 PHY之间的电口.
- ? 2004, 10GBASE-CX4 推出(IEEE802.3ak-2004): XAUI信号在同轴电缆传输(15m, 4x2.5G Infiniband, 预加重)
- ? 2006 9月.
 - " **10GBASE-T** 随**IEEE802.3an-2006**推出. 规范10GE在双绞线铜揽传输.
 - " 10GBASE-LRM 随IEEE802.3aq-2006推出. 10GE在已铺设多模光纤传输
- ? 2007, IEEE802.3ap-2007:背板接口标准.
 - " 1000BASE-KX " 1x1.25Gb/s
 - **10GBASE-KX4** 4x 3.125Gbps
 - " **10GBASE-KR** " 1x 10.3125Gbps


IEEE 802.3ba标准

40G 和100G 以太网

40G Gigabit Eth	ernet - Pr	oposed	
Name	Standard	Description	Physical Media
40GBASE-SR4	802.3ba	100 m operation over a new OM3 MM fiber.	4 parallel MM ribbon fibres of 10G, 40GBASE-SR4
40GBASE-LR4	802.3ba	10 km operation over single-mode fiber.	1 SM fiber, 4 wavelengths of 10G optics, 40GBASE-KR4
40GBASE-CR4	802.3ba	10 m operation copper cable assembly.	4 parallel lanes of 10GBASE-KR = 40GBASE-KR4
40GBASE-KR4	802.3ba	1 m operation over backplane.	4 parallel lanes of 10GBASE-KR = 40GBASE-KR4
100G Gigabit E	thernet - P	roposed	
Name	Standard	Description	Physical Media
100GBASE-SR10	802.3ba	100 m operation over a new OM3MM fiber.	10 parallel MM ribbon fibres of 10G, 100GBASE-SR10
100GBASE-LR4	802.3ba	10 km operation over single-mode fiber.	1 SM fibre, 4 wavelenths of 25G optics, 100GBASE-LR4
100GBASE-ER4	802.3ba	40 km operation over single-mode fiber.	1 SM fibre, 4 wavelenths of 25G optics, 100GBASE-ER4
100GBASE-CR10	802.3ba	10 m operation copper cable assembly	10 parallel cable lanes of 10GBASE-KR

Example Implementations:

4 @ 10.3125G Electrical

10G光通信应用标准

10 G以太网 (<u>www.IEEE.org</u>)"本地网络 (LAN)

Overview: http://en.wikipedia.org/w/index.php?title=10_gigabit_Ethernet&oldid=158488764

? 802.3ae: 10 GbE: 10GBASE-SR, -LR, -ER, -SW, -LW, -EW

? 802.3ag: 10 Gb/s 多模光纤以太网: 10GBASE-LRM

? 802.3ab: 40G/100G

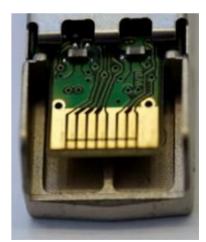
? SFP+ 模块被802.3aq标准采纳

光纤通道 (www.T11.org)" 存储网络(SAN)

Overview: http://en.wikipedia.org/w/index.php?title=Fibre_Channel&oldid=157471662)

? FC-PI-5: 物理层 10x FC/16x FC

? FC-FS-5: 协议层: 帧和信令标准


? 其它协议层标准 T11.3

SFF (<u>www.sffcommittee.com</u>) " 小尺寸封装Small Form Factor

? SFF-8431: 8.5G & 10G 增强型SFF 即插即用模块¡SFP+¡

? SFF-8432: 针对¡SFP+¡机械性能指标

? SFF-8083: ¡SFP+; 一致性板卡边沿连接器

光纤通道名称如何理解

数据速率

1200-SM-LC-L

1 600 -- 1 600 MB/s 16xFC 14.02Gb/s

1 200 -- 1 200 MB/s 10xFC 10.3125Gb/s

800 -- 800 MB/s 8x FC 8.5gb/s

400 -- 400 MB/s 4xFC 4.25Gb/s

200 -- 200 MB/s 2xFC 2.125Gb/s

100 -- 100 MB/s 1x FC 1.063Gb/s

传输媒质

SM["]单模

M5 -- 50¦ m多模 (OM2)

M5E " 50 m 多模(OM3)

M5F -- 50 m多模(OM4)

M6 -- 62.5¦ m多模(OM1)

SE"非平衡电接口

DF"平衡电接口

交互类型

SN " 短波长(850 nm) & 限幅接收机

SA --短波长(850 nm) & 线性接收机

LL "长波长(1310 nm / 1550 nm) & 限幅接收机

距离

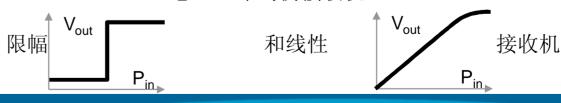
V "超长距离(>50 km)

L" 长距离(>10 km)

I "短距离 (>2 km)

M"中等距离(>4 km)

S "超短距离(>70 m)


LC "低成本长波长(1310 nm) & 限幅接收机

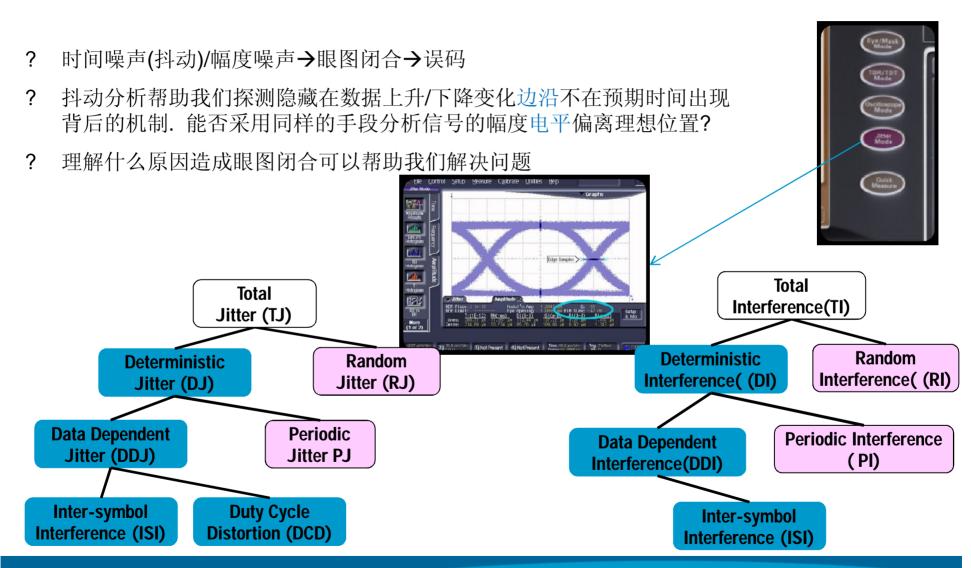
LZ --长波长(1490nm) & 限幅接收机

LA --长波长(1310 nm / 1550 nm) & 线性接收机

EL" 电口 & 无均衡接收机

EA -- 电口 & 带均衡接收机

内容安排


- ? 10G光接口模块&测试标准
- ?10G光接口测试需求及解决方案
- ? 10G光接口测试常见问题
- ? 86100D简介

10G光接口测试参数 IEEE802.3ae/ab(2008) & FC-PI-5(2010)

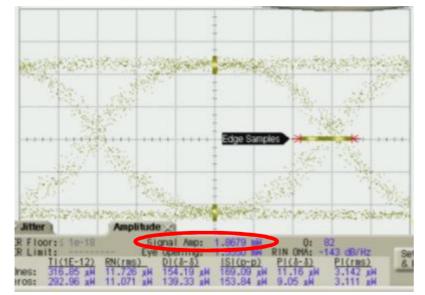
	参数	解释	SM	MM		参数	解释	SM	MM
	CW	中心波长	V	V					
	RMS BW	RMS光谱宽度		V					
	SMRR	边模抑制比	V						
	BW	20dB 谱宽	V						
	P _{out}	平均功率	V	V					
	OMA	光调制幅度	V	\checkmark					
发 射	Tr/Tf	上升/下降时间	$\sqrt{}$	$\sqrt{}$	接 收				
机	RIN OMA	相对噪声强度	$\sqrt{}$	$\sqrt{}$	及	P _{over}	过载功率	$\sqrt{}$	$\sqrt{}$
测 试	ER	消光比	$\sqrt{}$	$\sqrt{}$	测 试	JT	接收抖动容限(OMA)	$\sqrt{}$	\checkmark
124	TDP	色散代价	\checkmark		MY	P _{unstress} (OMA)	接收灵敏度(OMA)	$\sqrt{}$	$\sqrt{}$
	TJ	总抖动	$\sqrt{}$	$\sqrt{}$		RL	回波损耗	$\sqrt{}$	\checkmark
	DJ	确定抖动	\checkmark	$\sqrt{}$		F _{3dB}	3dB截止频率	\checkmark	$\sqrt{}$
	DDPWS	数据相关脉冲宽度收缩	\checkmark	\checkmark		F _{10dB}	10dB截止频率		V
	UJ	不相关抖动	√	\checkmark		P _{Stress} (OMA)	压力眼图灵敏度		$\sqrt{}$
	VECP	垂直眼图闭合代价		$\sqrt{}$					
	TWDP	发射波形色散代价		\checkmark					

: 抖动分析: &:幅度分析:

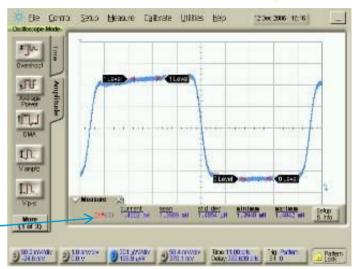
-86100X-200抖动分析选件 & 300幅度分析选件

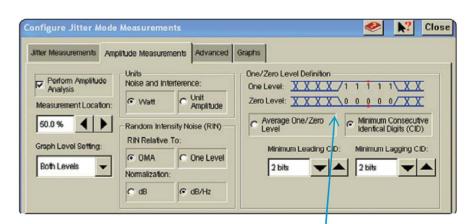
光调制幅度OMA

OMA: 光发射机输出信号1电平和0电平的幅度差


大多数标准要求特殊的测试码型以测量OMA

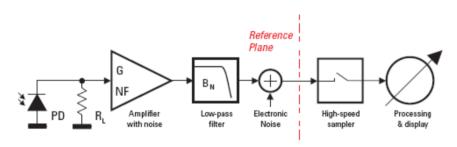
测试波形/不是眼图


典型情况是测量如下的方波码型


例如: 11111000001111100000i .

86100C V7.00以上版 本直接支持OMA测试

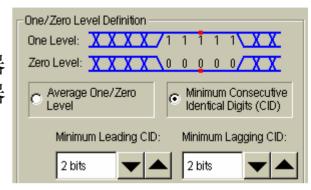
86100X-300 幅度分析选件支持任意码型 (自动找到1码序列和0码序列而无论其长度

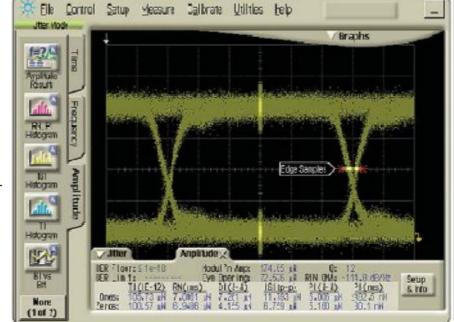


相对噪声强度RIN OMA测试

RIN:

- ? 定义:相对强度噪声(Relative Intensity Noise), 描述激光器 功率的不稳定性(噪声). RIN对描述应用于光通信的激光器 非常重要.
- ? 86100C-300 幅度噪声分析选件支持发射机RIN测试
 - " RIN OMA (符合802.3ae & 其他标准)

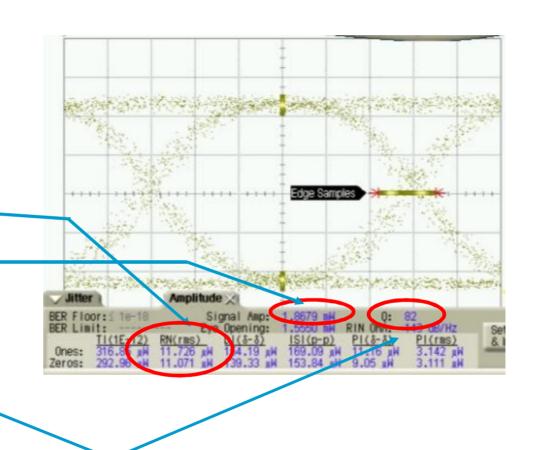

$$RIN = \frac{NEP^2}{P_{avg}^2 * BW_N} RIN \times OMA = \frac{N_{avg}}{P_{MOD} * B_N}$$


 RIN:
 相对噪声强度 (dB)
 RIN OMA:
 调制信号RIN (dB)

 NEP:
 等效噪声功率 (W)
 N:
 平均噪声功率 (W)

 P_{avg}:
 平均功率 (W)
 P_{MOD}
 t调制功率 (W)

 BW_N:
 噪声带宽 (Hz)
 B_N:
 噪声带宽 (Hz)



Q值测试

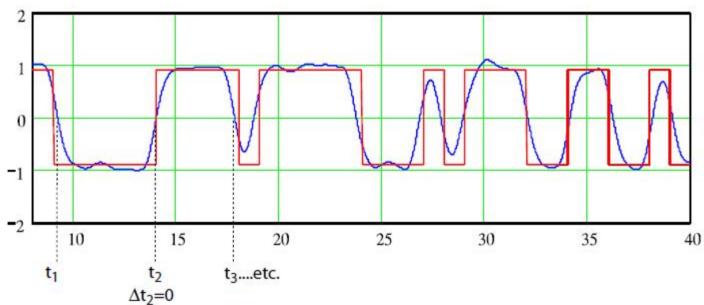
- **?Q-**值提供快速评估BER的方法 **?**假设接收机是理想的 **?**假设BER 主导原因是随机噪声
- ? 数字发射机信噪比
- ? 1码和0码;噪声;可能不同
 - " 必须两者都测量
- ? ¡信号; 是1码和0码差异
 - " 必须两者都测量

$$Q = \frac{P_{one} - P_{zero}}{RN_{one} + RN_{zero}}$$

抖动测试指标J2/J9 & DDPWS

J2: TJ (BER 2.5e-3) J9: TJ(BER 2.5e-10)

参考标准: 802.3ab


86100X-200可以直接测试J2/J9

? DDPWS:数据相关脉冲宽度压缩(Data Dependent Pulse Width Shrinkage)

参考标准: SFF-8431

86100X-401可以直接测试J2/J9/.DDPWS

DDPWS = T - min(t_2 - t_1 , t_3 - t_2 ,..... t_{n+1} - t_n)

抖动测试参数UJ

下降沿

标准方差

标准: IEEE802.3ae 68.6.8

Uncorrelated Jitter (rms) = $\sqrt{(\sigma_r^2 + \sigma_f^2)}$?2

标准方差

定义:发射机(数据)不相关抖动

测试条件:

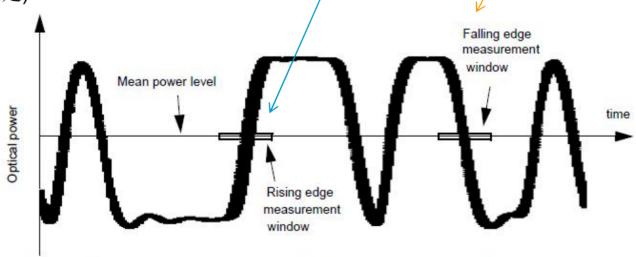
参考接收机: 7.5GHz 贝塞尔-汤姆逊滤波器响应参考接收机;

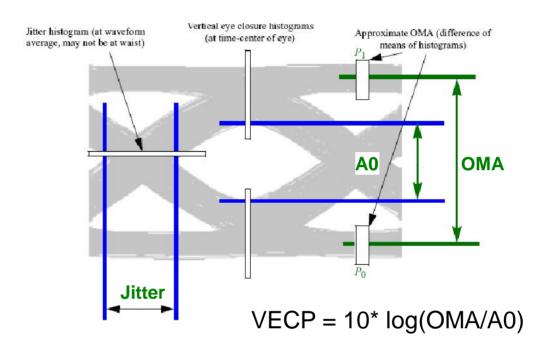
测试码型: PRBS 9或者专用测试码型1,2;

时钟恢复单元(CRU): 4MHz环路滤波器带宽,-20dB/decade滚降速率;

示波器和数据码型同步(锁定)

86100D 可以直接测试UJ




Figure 68-9—Measurement windows for transmitter uncorrelated jitter

垂直眼图闭合代价VECP

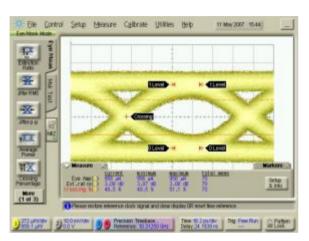
2种情况需要测试VECP:

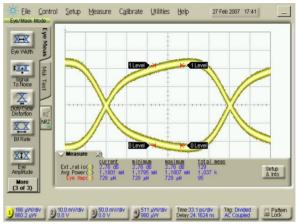
?发射机测试VECP ?接收机灵敏度@压力眼图

术语:

VECP: 垂直眼图闭合代价(i innermost eye opening at center of eyei)

OMA: 光调制幅度,单位[mW] (¡平均信号幅度¡)

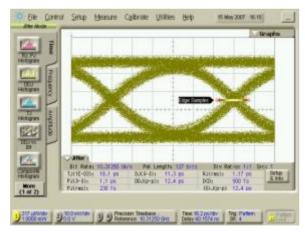

ER: 消光比, 单位 [dB] 或 [%] UI: 单位间隔 (1比特周期)

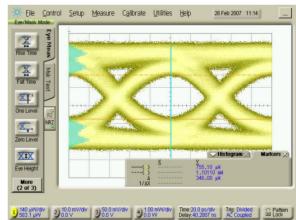

FC: 光纤通道

LR, SR, ER, LRM: 10Gb以太网标准(长距离:10km, 短距离:300m, 超长距离40km, 短距离多模:300m

86100X如何进行压力眼图校准测试?

消光比 & 交叉点 眼图模式 码型:PRBS, ERCF ON)


OMA


眼图模式

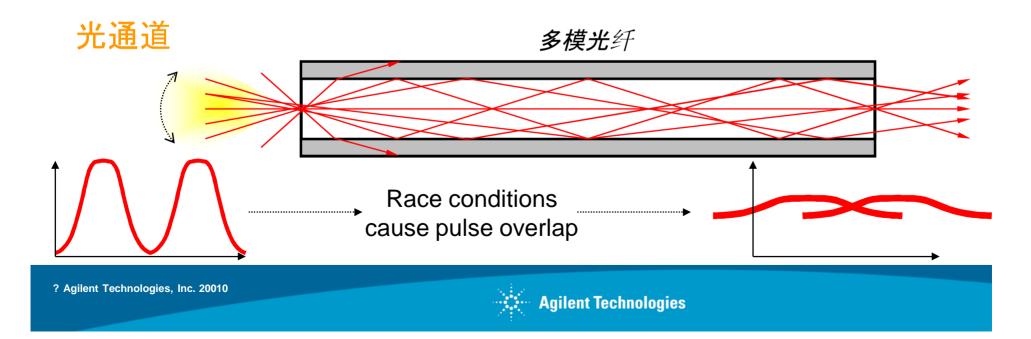
码型:1100

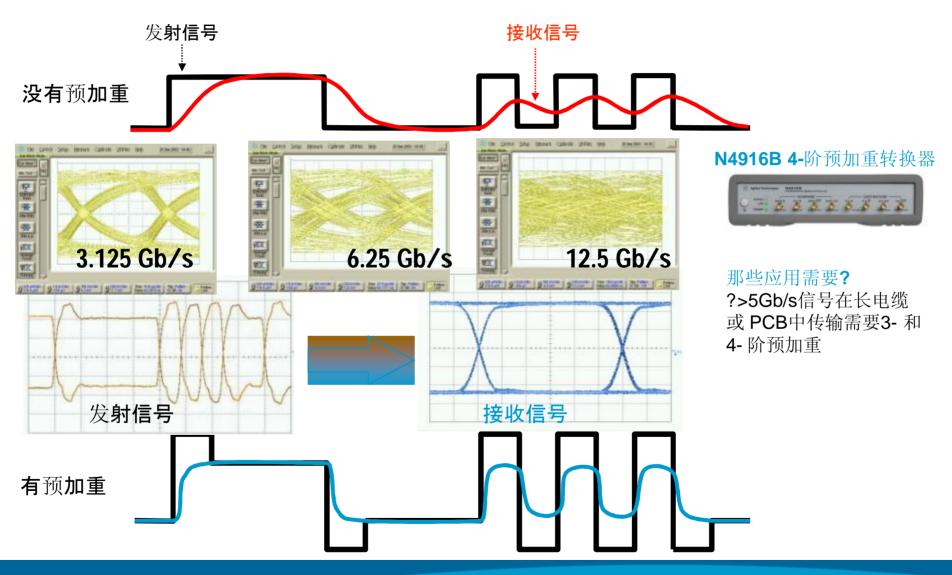
参数: 眼图幅度)

TJ (BER 1 e-3), RJ, DCD & ISI 抖动模式 (#200)

A0 (BER 1 e-3) 抖动模式/ 幅度分析 (#300),

参数: 眼张开度


TJ (BER 1e-2) = TJ (BER 1e-3) " 2* RJ


光域/电域色散

电通道

预加重色散补偿"发射机(Tx)端

均衡器色散补偿"接收机(Rx)端

假设

- ? 系统线形
- ? 信号劣化主要由于码间干扰 (ISI)
- ? ISI是确定和可不补偿的

经过均衡

均衡之前

Ejle Control Setup Measure Calibrate Utilities Help 27 Apr 2005 15:50

Eye/Mask Mode

Eye/Mask Mode

Figure Power

Jitter p-p

Jitter p-p

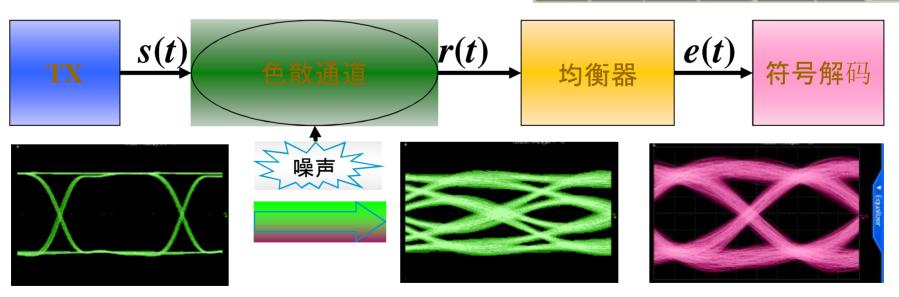
Average Power

Percentage

Percentage

Normalize Values Automatic Taps

Tap 1 Tap 2 Tap 3 Tap 4 Tap 5

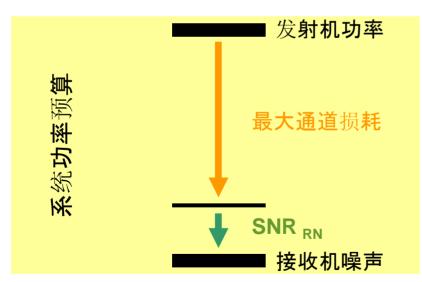

100 mV

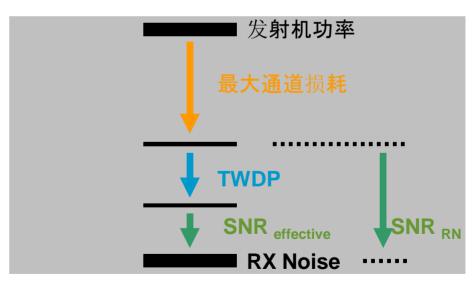
J 208 7 m

J 100 mV

J 208 7 m

-86100X -201选件内置线性反馈均衡器算法




新的测试参数 TWDP

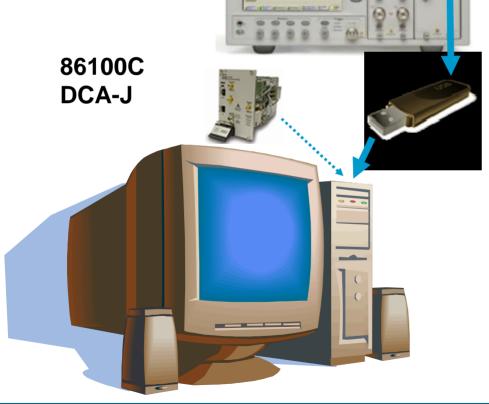
发射机波形色散代价

?量化评估接收机眼图的相对闭合 Transmitter Waveform Dispersion Penalty

- "参考理想发射机,理想通道,接收机噪声高斯分布
- "代价: 信噪比由于发射机波形失真/通道色散造成的劣化
- ? 由ClariPhy Communications, Inc.提出* for IEEE 802.3aq
- ? 8G 光纤通道和IEEE 802.3ax (其他标准也均采纳) 都采纳这个概念

^{*} MATLAB? scripts for TWDP calculations may contain intellectual property owned by ClariPhy Communications, Inc.

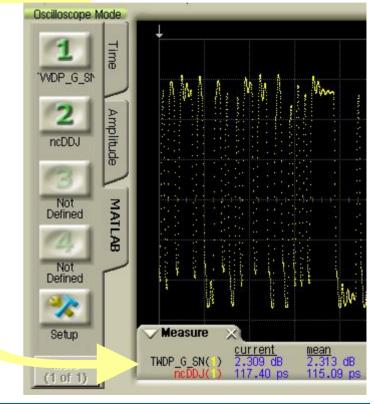
TWDP 测量

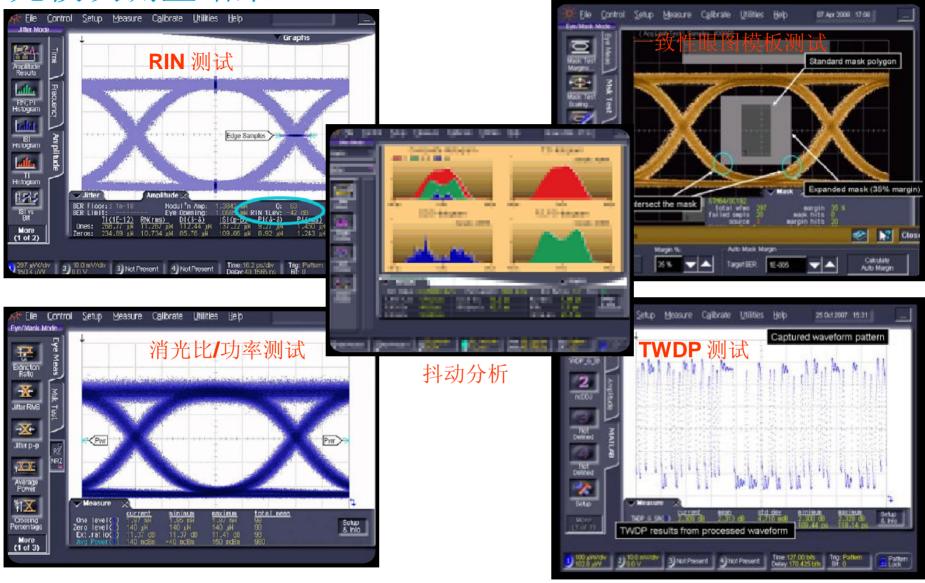

-86100X -201选件

外部处理

?码型锁定数据,进行捕获

? 最高的灵活性

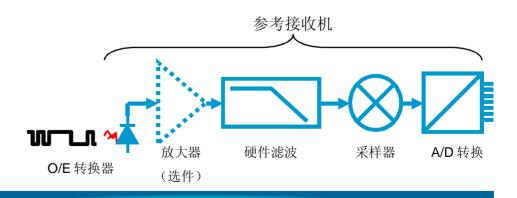

?高精度


-86100X -201选件支持在线TWDP测试

DCA-J +内置MATLAB

- ?标准数据捕获
- ? 使用测量方便
- ?实时显示结果

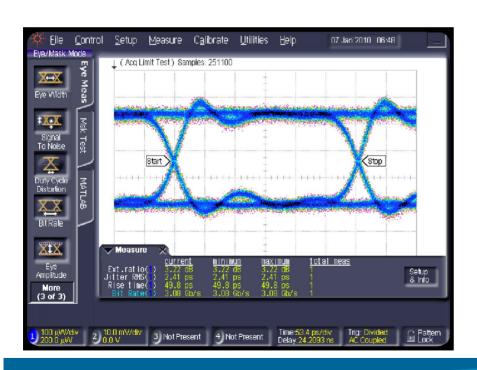
光模块测量结果



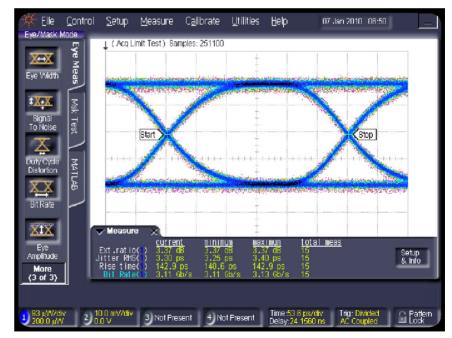
内容安排

- ? 10G光接口模块&测试标准
- ? 10G光接口测试需求及解决方案
- ? 10G光接口测试常见问题
- ? 86100D简介

测量示波器带宽问题

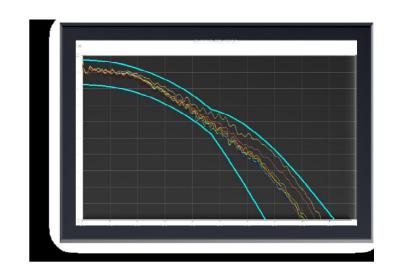

- ? 发射机测量结果依赖于示波器带宽
 - "带宽太大:噪声高,过冲,纹波
 - "带宽太小:高码间干扰,抖动
- ? 通用规则: 参考接收机
 - " 定义测试系统的频响
 - "典型的4th 阶贝塞尔滤波器=汤姆逊低通滤波响应
 - "带宽近似于75%数据速率
 - ? 接收机频响有一定的容限

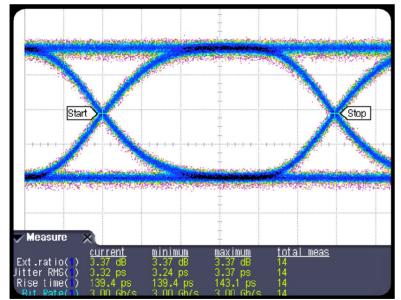
测量示波器带宽问题示波器带宽的影响


不加滤波器适合:

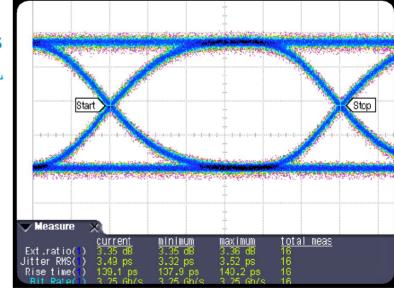
- ? 激光器和驱动设计
- ? 光器件故障排查

加滤波器适合:


- ? 一致性验证
- ? ER & OMA 调节
- ? 生产质量控制

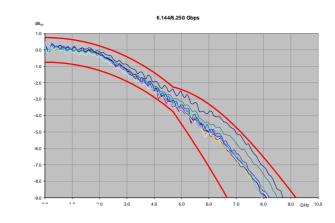


测量示波器带宽问题参考接收机带宽要求


- ? 滤波器幅频响应幅度容限比绝对带宽更重要
 - "例如: 8.5 Gb/s, 9.953 Gb/s 和 10.3125 Gb/s 采用相同的滤波器
- ? 标准对滤波器带宽通常采用近似原则
 - " 3.072 Gb/s 和 3.125 Gb/s 采用相同的参考接收机

3.00 Gb/s 信号

3.125 Gb/s 参考接收机


3.25 Gb/s 信号

参考接收机带宽问题

8x FC(8.5Gb/s)参考接收机带宽新要求

? 2008年5月推出光纤通道标准FC-PI-4,提出 8x FC速率测试采用7.5GHz 滤波器(=0.75x10.3125G)

A.1.2.1.1 Bessel-Thomson filter

The fourth-order Bessel-Thomson transfer function is given by

 $H_{\mathbf{p}} = \frac{105}{105 + 105\mathbf{y} + 45\mathbf{y}^2 + 10\mathbf{y}^3 + \mathbf{y}^4}$

注意:

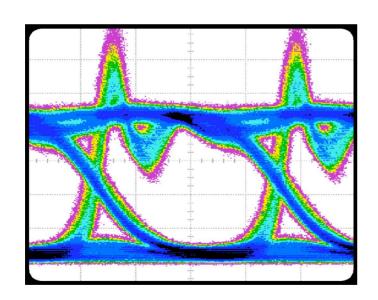
8.5G 速率信号采用10GBE滤波器

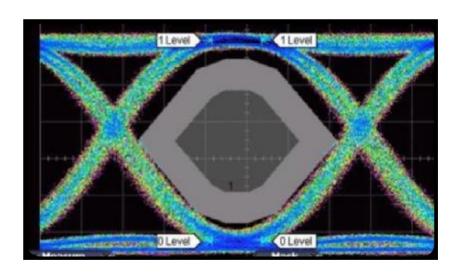
With

$$\mathbf{y} = 2.114 \times \mathbf{p}$$
 $\mathbf{p} = \frac{\mathbf{j}\omega}{\omega_{\mathbf{r}}}$ $\omega_{\mathbf{r}} = 2\pi \mathbf{f_r}$ $\mathbf{f_r} = 0.75 \times \mathbf{f_0}$ for 1GFC/2GFC, and 4GFC

摘自FC-PI-4¡A.1.2.1.1

? 2010年8月推出光纤通道标准FC-PI-5,进一步明确8GFC采用7.5GHz滤波器


Table A.5 - Filter 3 dB point


Signaling rate	Filter 3dB point
1.0625 GBd	800 MHz
2.125 GBd	1 600 MHz
4.250 GBd	3 200 MHZ
8.500 GBd	7 500 MHZ

过冲测试问题

- ? 过冲测试需要在不加滤波器下进行
- ? 示波器不加滤波器带宽越高,过冲测试越准确
- ? 但是,不同的示波器模块具有不同的带宽,因此测试结果会不同

如何选择示波器测试模块?

86105B 不加滤波器(15GHz 带宽)

86105C 不加滤波器(8.5GHz带宽)

过冲测试问题

- 最新的86105D 光电模块

		86105B	86105C	86105D
Wavele	ength	1000-1600nm	750-1650nm	750-1650nm
Optical	BW	15GHz	8.5GHz	20GHz
Mask S	Sensitivity	-12dBm	-17dBm	-12dBm
	Low band	YES*1	YES*2	No
Filter	8.5Gb/s	No	YES*3	YES
Rate	10G-band	YES	YES*4	YES
	14.0Gb/s	No	No	YES
Electric	al BW	20GHz	20GHz	35GHz

- 20 GHz optical channel
- Multi-mode and singlemode capability
- 750 to 1650 nm wavelength range
- 35 GHz electrical channel
- Compliance test solution for 8X
 Fibre Channel, 10 Gb/s, and 16X
 Fibre Channel rates

	Optical channel	Electrical channel
Bandwidth	20 GHz ³	25 and 35 GHz
		(user selectable)
Wavelength range	750 to 1650nm	
RMS noise	5 uW (10 Gb receiver 1310 nm)	250 uV (25 GHz BW)
	to 8 uW [16xFC receiver 850 nm]	450 uV (35 GHz BW)
Eye-mask sensitivity4	-12 dBm	
Input connector	62.5/125 um	3.5 mm
Reference receiver	8x FC	
filter settings	10 Gb SCNET/SDH	
	10xFC	
	11xFC	
	16xFC	
	10.66/10.71/11.1/11.3 Gb/s (FEC rates)	

眼图模板测试问题

? 标准模板

- · 单次冲击模板(眼图测量模式)意味着 ;失败;
- " 通过/失败 依赖于事件速率和测量时间

? 统计模板

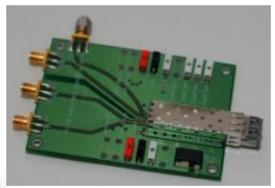
- " 标准: 模板失败<= BER * 采样/UI
- "显著提高测试重复性,降低不确定度

? 模板富余度

- " 用户可以在*.msk文件定义/编辑目标 (100% 富 余度)
- " Rev 8.0 to 包括基于误码率的1-shot自动富余度测试

10G器件测试夹具问题

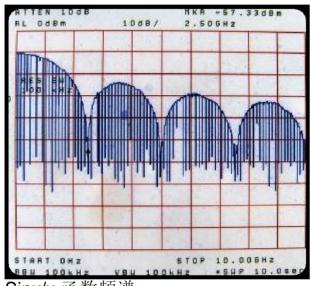
如何测试SFP+, XFP 和 XAUI10G 模块光口/电口参数:标准一致性测试夹具保住我们引出被侧信号Fixtures to test the or the host servers.


SFF-8431 描述了2种夹具:

MCTB (Module Compliance Test Board)
HCTB(Host Compliance Test Board).

这些夹具可以用来配合DCAj或实时示波器进行系统级或模块级光口/电口测试.

SFP+ HCTB


SFP+ MCTB

为什么采用长测试数据码型PRBS31?

长数据码型可以发现更多的问题(如:基线漂移), 因此很多新规范要求在长数据码型下进行眼图/抖动测试

Sinx/x 函数频谱 码型长度越长频谱密度越高

SFF-8431 针对SFP+ 模块

ftp://ftp.seagate.com/sff/SFF-8431.PDF

section 2.2. The test pattern for Total Jitter (TJ) and 99% Jitter (J2) testing shall be other PRBS31 or a valid 648/66B signal. These metrics of jitter are measured without averaging.

IEEE 802.3ba 针对 40G/100G 以太网

Draft Amendment to IEEE Std 802.3-2008 IEEE 802.3ha 40Gb/s and 100Gb/s Etherner Task Force

IEEE Draft P302.3ba/D1.2 10th February 2009

Table 86-15-Test patterns

Pattera no.	Pattern .	Pattern defined in
Square	Square (8 ones, 8 zeros)	83.5.10
3	PRBS31	83.5.10
4	PRBS9	83.5.10
5	Scrambled idle	82.2.11

OIF-CEI 2.0

Optical Internetworking Forum - Common Electrical I/O Implementation Agreement

- for application in high speed backplanes, chip to chip interconnect and optical modules.

2.2.1 Defined Test Patterns³

The following pattern shall be used for the testing of jitter tolerance and output jitter compliance.

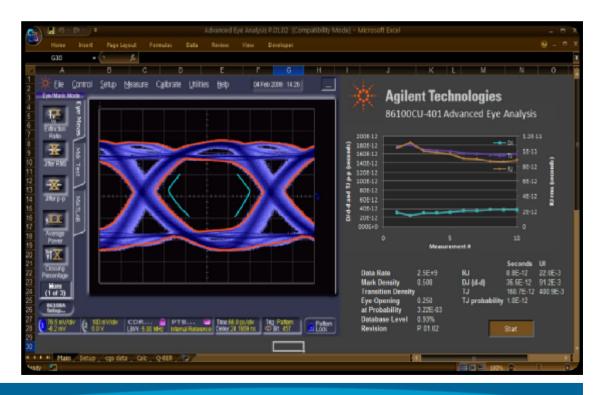
· A free running PRBS31 polynomial

高级眼图分析(401选件)

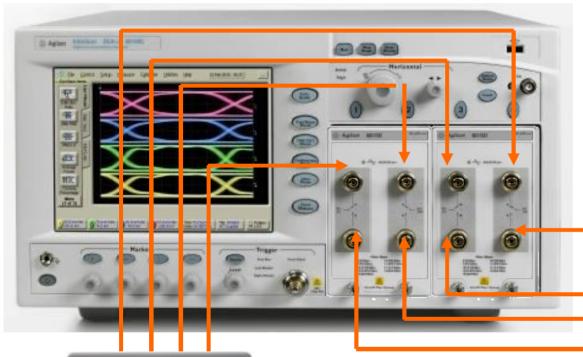
86100X-200抖动分析软件: 最长分析数据码型<215-1

如何分析更长的数据码型的抖动呢?

86100X-401选件帮助解决这个问题。

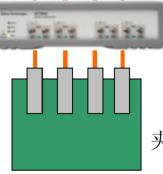

86100X-401功能

支持PRBS23, 31, 在线业务信号, 抖动分析

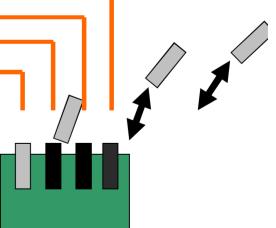

支持J2/J9测试

支持DDPWS测试

支持 BER等高线的眼图


并行器件测试问题

86115D 多端口模块 Option 002 Option 004



N7764A多通道衰减器

交替测试

夹具A进行测试

在夹具B更换收发模块

内容安排

- ? 10G光接口模块&测试标准
- ? 10G光接口测试需求及解决方案
- ? 10G光接口测试常见问题
- ? 86100D简介

安捷伦采样示波器

数字通信分析仪(Digital Communication Analyzer)

技术创新

第一台 SONET-一致性测试采样示波器: 1994 内置一致性滤波器的光电模块

时钟恢复模块: **1998** 83491/2/3/4A 时钟恢复模块

精准时基模块: 2002 86107A 200fs 残留抖动

抖动分解: **2003** 86100C-200 增强抖动分析

内置均衡信号处理: **2004** 86100C-201 增强波形分析

宽带一致性时钟恢复模块: 2005 83496A-Opt. 300 可调带宽(Golden) PLL

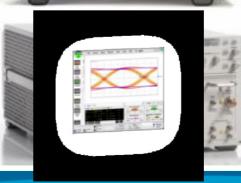
幅度分析/RIN测试: 2007

86100C-300 幅度分析

去嵌入分析: 2010 86100D-SIM 去嵌入/嵌入分析 ; 安捷伦在采样示波器 领域绝对领先!;

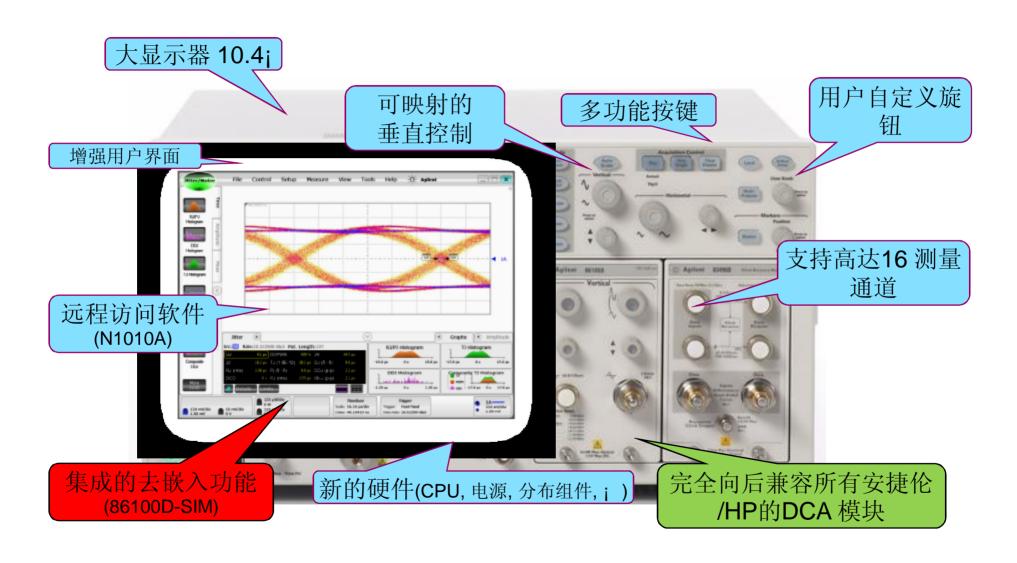
>80% 市场占有率(全球)

>90% 市场占有率(中国)

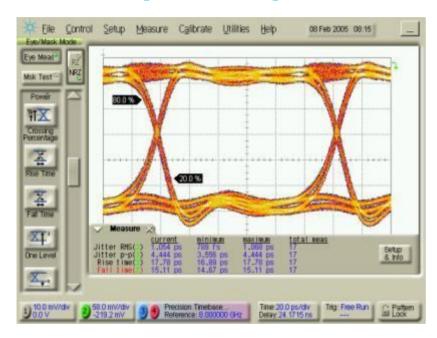


86100A@1998 86100B@2001

83480A@1994


86100C@2003

86100D@2010

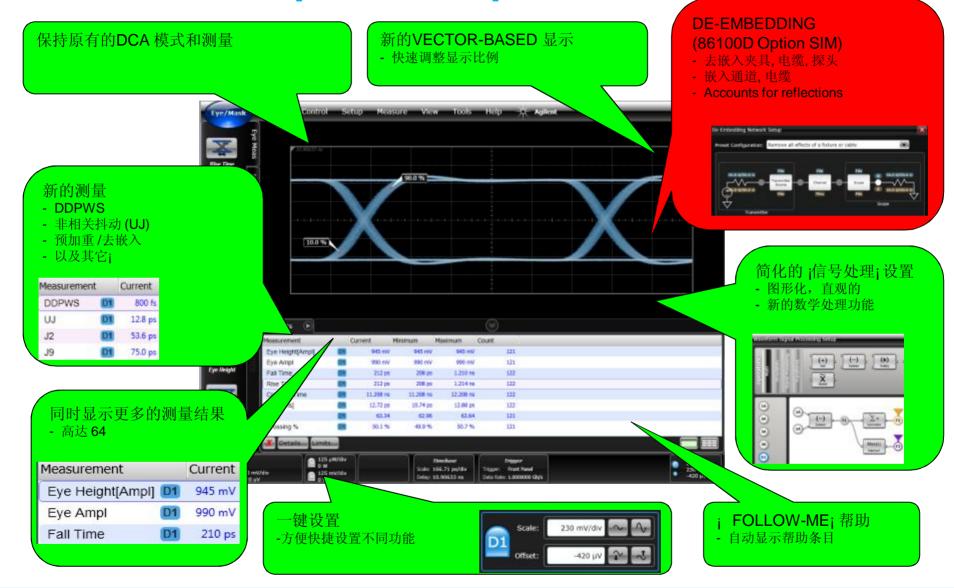

86100D DCA-X " 有哪些改进?

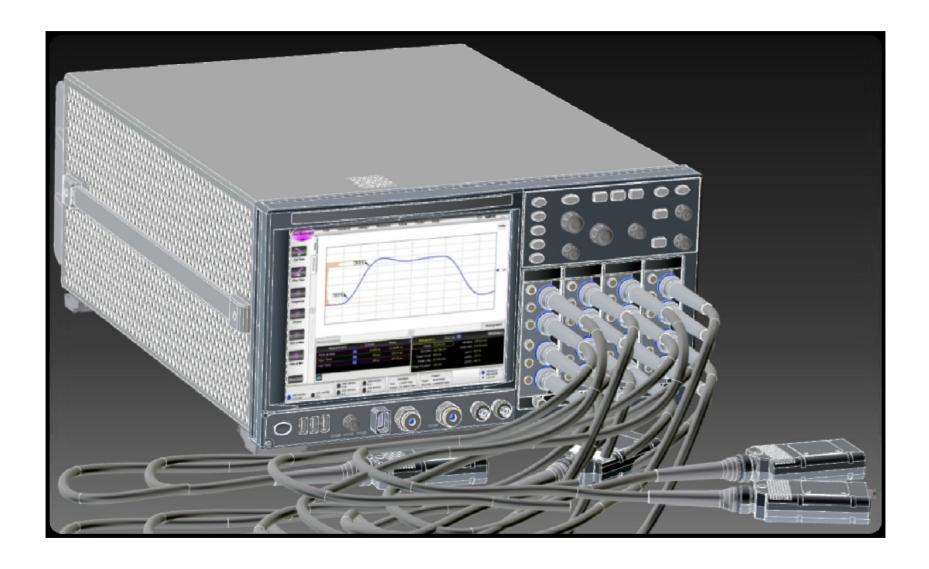
86100D"提供2种用户界面


可以切换¡Classic; 和 ¡Advanced; 用户界面

DCA-J ¡ Classic¡

- ? 完全向前兼容所有模块
- ➤ 光, 电, TDR/TDT/S-参数
- ▶ 抖动,幅度,和PLL分析
- ➤ 带宽18GHz ~ >90GHz
- ➤ 速率覆盖50Mbps ~ >80Gbps


DCA-X; Advanced;


- ? 去嵌入 /嵌入 (采用 86100D选件SIM - InfiniiSim DCA)
- ? 增强信号处理
- ? 用户可以自定义新的测量能力

86100D DCA-X ¡ Advanced 用户界面

86100D" 支持16通道并行测试的架构

i Be Ready for10Gb/s Optical Interface & Testing

问题? vs问题!