目录

第-	一节	概述	2
	1.1	板卡特点	2
	1.2	规格参数	3
	1.3	接线电缆和端子板	4
	1.4	开发和使用流程	4
笛⁻	一节	安装与测试	5
<u> </u>	2.1	初始检查	5
	2.2	Windows XP/2000 系统下板卡的安装	5
	2.3	板卡跳线与信号连接	6
		2.3.1 拨码开关和跳线设置	6
		2.3.2 板卡 ID 的设置(sw1)	6
		2.3.3 热启动后的电压设置(JP2)	7
		2.3.4 双向 DIO 选择(sw2)	7
		2.3.5 信号连接	8
	2.4	在 Device Manager 的 Test 中测试板卡基本功能	9
		2.4.1 数字量输入测试	9
		2.5.2 数字量输出测试	10
第三	三节	测试例程	12
		3.1 DI_Soft (软件的方式读取 DI 值)	12
		3.2 DI_Int(中断方式读 DI 的值)	13
		3.3 DO_StaticDO(软件的方式输出)	15
		3.4 DI_DMA_BM(高速 DI 输入功能)	15
		3.5 DO_DMA_BM(高速 DO 输出功能)	19
		3.6 FDI_INFINITE_BUFFER (Buffer 可设的高速 DI 采集)	21
		3.7 Timer (定时器功能)	24
第四	丁丁	软件开发介绍	25
	4.1	高速 DI 采集	25
	4.2	高速 DO 采集	26
第3	五节	总结	28

PCI-1755 板卡全功能测试文档

第一节 概述

PCI-1755 是一款 PCI 总线的 32 通道高速数字量 IO 卡。该卡支持 PCI 总线主控 DMA,可用于高速数 据传输。此外,该卡还提供 8 路普通的数字量输入\出等功能,使得该产品完全能够满足您的工业或实验室 应用。

针对用户使用不同的操作系统,研华提供了能适应 WIN 2000 \ XP 的驱动,此驱动仅可以支持单核操 作系统。对于用户编程来说,我们还提供了常用语言的编程例程,比如,VB、MFC、LabVIEW、Delphi、 BCB 等。

鉴于该板卡的应用文档比较少,所以通过本手册中描述的功能测试,用户可以在选型和使用板卡过程 中参考这些参数,来更好地满足用户的要求,同时也能更好地帮助售前和业务来更好地理解该板卡的功能。

下面就让我们一起来挑战高难度板卡吧!

1.1 板卡特点

- 总线控制 DMA 数据传输
- 32/16/8 位模式 I/O 处理,带启/停触发功能,2个模式握手 I/O 中断处理能力
- 板载主动终端电阻,高速和远程传输
- 支持模式匹配和状态改变检测中断功能
- 通用 8 通道数字量 I/O

1.2 规格参数

通道	32 路 TTL 兼容					
端口数量	端口A、端口B	、端口 C 和端口	D(8位/端口)			
I/O 配置	32DI (PA~PD) (默认); 32DO (PA~PD); 16DI (PA~PB) & 16DO (PC~PD); 8DI (PA) & 8DO (PC) (可编程)					
板载 FIFO	16 KB 用于 DI,	16 KB 用于 DO				
	数据传输模式	使用 Scatter-Gather 技术的总线主控 DMA				
传输	数据传输 总线带宽	8/16/32 位(可编程)				
特性	最大传输速率	DI: 80 MB/sec, 32 位 @ 20 MHz 120 MB/sec, 32 位 @ 40 MHz 外部触发器 (当数据长度小于 FIFO 容量时) DO: 80 MB/sec, 32 位 @ 20 MHz				
	工作模式	握手				
	方向	I/O	采样编号	有限传输,连续 I/O		
	异步	模拟 8255	同步	猝发握手		
握手模式	猝发握手时钟源	内部 30 MHz, 20 (用于 DI) & 定田 外部: EXT_CLKII)MHz, 15 MHz, 1 対器 #1(用于 DC N(用于 DI)& E)	2 MHz, 10 MHz, 定时器 #0)) XT_CLKOUT(用于 DO)		
	输入	通过内部/外部时钟预定义速率的数据采集				
	输出	通过内部 / 外部时钟预定义速率的波形输出				
	DI 时钟源	内部: 30 MHz, 20 MHz, 15 MHz, 12 MHz, 10 MHz, 定时器#0 外部:EXT_CLKIN				
普通模式	DO 时钟源	内部 30 MHz, 20 MHz, 15 MHz, 12 MHz, 10 MHz, 定时器 #1 外部:EXT_CLKOUT				
	启动模式	软件指令/从 DI_STR 或 DO_STR 产生的触发信号/Pattern DI				
	停止模式	软件命令/从 DI_ 的触发信号/Pat	_STR(用于 DI)或 tern DI/'' 有限传轴	t DO_STR(用于 DO)产生 俞 [‴]		
	(仅 DI)	当任何一个通道有转换操作时对此输入通道进行监视并获取数据,然后产生一个 IRQ				
改变检测	DI 时钟源	内部 30 MHz, 20 MHz, 15 MHz, 12 MHz, 10 MHz, 定时器 #0 外部 EXT_CLKIN				
	启动模式	软件命令 / 从 DI_STR 产生的触发信号 /Pattern DI				
	停止模式	软件指令 / 从 DI_STR 产生的触发信号 // Pattern DI/" 有限传输"				
	DI 触发信号	DI_STR, DI_STP	DO 触发信号	DO_STR, DO_STP		
	低电平	0.8 V(最大)	高电平	2.0 V(最小)		
	触发类型	上升或下降沿, 1	或数字量模式(仅	(DI)		
触发功能	边沿触发 脉冲宽度	10 ns(最小)				
	模式触发 检测功能	检测选定数据线上的模式匹配或不匹配				
端接	板上带肖特基二	极管端接电阻				

信息	在以下三种情况下会发出消息。1. 传输字节已达到指定数量; 2. 指定的输入模式匹配; 3. 测量操作完成。					
输入电压	低电平	0 V(最小) 0.8 V(最大)	高电平	2.0 V(最小) 5 V(最大)		
	端接电阻关: II	L兼容				
	低电平	+0.5V@±20mA	高电平	+2.7 V @ ± 1 mA (最大)		
输入负载	端接电阻开					
	端接电阻	110 Ω	端接电压	2.9 V		
	低电平	+.5 V @	高电平	+2.7 V @		
		± 22.4 mA		±1mA(最大)		
输出电压	低电平	0.5 V(最大)	高电平	2.7 V (最小)		
驱动能力	低电平	0.5 V(最大) @+48 mA(汇)	高电平	2.4 V 最小 @ -15 mA(源)		
滞后	500 mV	I/O 接口 可用电源	+4.65 ~ +5.25 V _{DC} @ 1A			
通用 DI/O	DI 通道	DI0~DI7 (TTL 兼容)				
10000	DO 通道	DO0~DO7 (TTL 兼容)				
中新酒	DI0~7 和定时器	Ť				
1 41.00	2. 模式匹配和改	炎变检测,DI FIFC	D 上溢和 DO FIFO	D下溢, DI_STP 和 DO_STP		

1.3 接线电缆和端子板

和 PCI-1755 卡相连接的是 PCL-101100 的线缆,另一端连接 ADAM-39100 的端子板。

• 线缆——PCL-101100

PCL-101100 屏蔽电缆为 PCI-1755 卡提供了高抗噪声特性,为了实现更好的信号传输质量,减少来自 其他信号源的串扰和噪声,信号线以双绞线形式连接两个端子头。此外,其模拟和数字线路分别护套和屏 蔽,以消除 EMI/ EMC 干扰问题。

• 端子板——ADAM-39100

ADAM-39100 是一个 100 针 SCSI-II 接线端子模块, DIN 导轨安装。该终端模块可以很容易地连接至 研华 PCI-1755 板卡,还便于可靠地访问 PCI-1755 卡上各个引脚。

1.4 开发和使用流程

以下步骤指导用户如何正确安装、配置和操作 PCI-1755 设备。

步骤1:将 PCI-1755 设备插入系统的 PCI 插槽后,启动计算机。

步骤 2: 插入附带的 CD-ROM 光盘并安装 Device Manager 驱动,并在系统中自动添加板卡。

步骤 3: 通过 Device Manager 的 Setting 界面设置基本参数。

步骤 4: 通过 Device Manager 的 Test 测试和运行设备功能基本功能。

步骤 5: 我们有提供编程例程,可以帮助用户二次开发。参考示例和手册,可获得详细指导步骤。

下面章节将详细介绍上述步骤中的板卡的安装、卸载、配置、测试等细节。

第二节 安装与测试

2.1 初始检查

研华 PCI-1755,包含如下部分:一块 PCI-1755,一块含板卡驱动的光盘。打开包装后,请您查看这 三件是否齐全,请仔细检查有没有在运送过程中对板卡造成的损坏,如果有损坏或者规格不符,请立即告知 我们的服务部门或是本地经销代理商,我们将会负责维修或者更换。取出板卡后,请保留它的防震包装, 以便在您不使用时将采集卡存放起来。在您用手持板卡之前,请先释放手上的静电(例如,通过触摸您电 脑机箱的金属底盘释放静电),不要接触易带静电的材料,比如塑料材料等。手持板卡时只能握它的边沿, 以免您手上的静电损坏面板上的集成电路或组件。

2.2 Windows XP/2000 系统下板卡的安装

研华针对 Windows XP/2000 系统,提供了 Device Manager 驱动,可以到研华官方网站下载。下面是具体安装板卡驱动步骤。

用户可将 PCI-1755 板卡安装在计算机中的任一 PCI 插槽。接下来按照以下步骤操作:

步骤1:关闭计算机,移除计算机顶盖和后面板上的插槽盖。

步骤 2:调整板卡上的 DIP 开关 SW1 来设置板卡的板卡 ID。

步骤 3: 将 PCI-1755 卡插入 PCI 插槽。并将所需附件连接至 PCI 板卡。

步骤4:重启计算机。

步骤 5:从 DVD 光盘中安装 Device Manager 来建立操作环境。

1. 将附带的 DVD 光盘插入系统中,安装程序将自动运行。

2. 首先安装"Device Manager"选项安装包。

3. Device Manager 包成功安装之后,点击 IndividualDriver,然后选择您所安装的板卡的类型和型号,然后按照提示就可一步一步完成 PCI-1755.exe 驱动程序的安装。

4. 重启电脑。 在系统的提示下安装板卡驱动。安装完成后,在系统设备管理器中会出现 PCI-1755 板卡:

🚨 设备管理器	
文件(E) 操作(A) 查看(V) 帮助(H)	
 20101207-1121	
🖻 🌌 Advantech DA&C I/O cards	_
🕮 Advantech PCI1755S Device	
由 🗃 🗃 IDE ATA/ATAPI 控制器	

2.3 板卡跳线与信号连接

在数据采集应用中,为了达到准确测量并防止损坏您的应用系统,正确的信号连接是非常重要的。这 一章我们将向您介绍如何来正确数字信号的输入/输出连接。

2.3.1 拨码开关和跳线设置

PCI-1755 具有两个拨码开关和一个跳线设置。

2.3.2 板卡 ID 的设置(sw1)

用户可以使用四位 DIP 拨码开关 SWI 来设置板卡 ID,当用户使用多块 PCI-1714 采集卡构建自己的 系统时,ID 设置功能极为有用。如果采集卡的设置正确,用户可以很方便的在硬件配置和软件编程过程中 区分和访问每块采集卡。如下图所示:用户可以通过函数 DRV_DeviceGetProperty 来读取板卡 ID。

ID3	ID2	ID1	ID0	Board ID
1	1	1	1	0
1	1	1	0	1
1	1	0	1	2
1	1	0	0	3
1	0	1	1	4
1	0	1	0	5
1	0	0	1	6
1	0	0	0	7
0	1	1	1	8
0	1	1	0	9
0	1	0	1	10
0	1	0	0	11
0	0	1	1	12
0	0	1	0	13
0	0	0	1	14
0	0	0	0	15

注意: ON 1, OFF 0

2.3.3 热启动后的电压设置(JP2)

JP2 跳在右边热启动后保持上次的状态, JP2 跳在左边重新导入默认设置

跳线名称	功能描述		
IDO		热重启之后保持最后状态	
JP2		默认配置	

2.3.4 双向 DIO 功能选择(sw2)

通过拨码开关可以设置辅助 I/O 为输入还是输出

	DIO7	DIO6	DIO5	DIO4	DIO3	DIO2	DIO1	DIO0
数字量输出	0	0	0	0	0	0	0	0
数字量输入	1	1	1	1	1	1	1	

2.3.5 信号连接

\frown					
	(
PA00	1	51	GND		
PA01	2	52	GND		
PA02	3	53	GND		
PA03	4	54	GND		
PA04	5	55	GND		
PA05	5	56	GND		
PA06 PA07	8	57 58	GND		
PB00	9	59	GND		
PB01	10	60	GND		
PB02	11	61	GND		
PB03	12	62	GND		
PB04	13	63	GND		
PB05	14	64	GND		
PB06	15	65	GND		
PB07	16	66	GND		
DI ACK	17	67	GND		
DI REO	18	68	GND		
EXT_CLKIN	19	69	GND		
DI STR	20	70	GND		
DI STP	21	71	GND		
DI00	22	72	GND		
DIO1	23	73	GND		
DIO2	24	74	GND		
DI03	25	75	GND		
DIO4	26	76	GND		
DIO5	27	77	GND		
DI06	28	78	GND		
DIO7	29	79	GND		
DO ACK	30	80	GND		
DO REO	31	81	GND		
EXT CLKOUT	32	82	GND		
DO STR	33	83	GND		
DO_STP	34	84	GND		
PC00	35	85	GND		
PC01	36	86	GND		
PC02	37	87	GND		
PC03	38	88	GND		
PC04	39	89	GND		
PC05	40	90	GND		
PC06	41	91	GND		
PC07	42	92	GND		
PD00	43	93	GND		
PD01	44	94	GND		
PD02	45	95	GND		
PD03	46	96	GND		
PD04	47	97	GND		
PD05	48	98	GND		
PD06	49	99	GND		
PD07	50	100	GND		

I/O 管脚具体定义如下:

Signal Name	Reference	Direction	Description
PA00~PA07	GND	I/O	Port A bi-directional DIO channels
PB00~PB07	GND	I/O	Port B bi-directional DIO channels
PC00~PC07	GND	I/O	Port C bi-directional DIO channels
PD00~PD07	GND	I/O	Port D bi-directional DIO channels
DI_ACK	GND	Output	Acknowledge line for digital input channels
DI_REQ	GND	Input	Request line for digital input channels
EXT_CLKIN	GND	Input	Clock input channel
DI_STR	GND	Input	Start trigger line for digital input channels
DI_STP	GND	Input	Stop trigger line for digital input channels
DO_ACK	GND	Input	Acknowledge line for digital output channels
DO_REQ	GND	Output	Request line for digital output channels
EXT_CLKOUT	GND	Output	Clock output channel
DO_STR	GND	Input	Start trigger line for digital output channels
DO_STP	GND	Input	Stop trigger line for digital output channels
DIO0~DIO7	GND	I/O	General-purpose digital input/output channels
GND	-	-	Ground reference for all other signals

2.4 在 Device Manager 的 Test 中测试板卡基本功能

在上图的界面中点击"Test",弹出下图,可以对辅助通用8路I/O进行测试,但是高速I/O功能不能 在这里测试,需要使用例程测试。具体见下一节例程使用。

在测试数字量输入和输出功能时,首先要在板卡硬件的 SW2 上设置板卡的 DIO 端口是作为输入还是输出使用。

2.4.1 数字量输入测试

硬件接线:

测试数字量输入功能,可以在 DI 通道和 GND 之间,外接一开关,当开关打开得到高电平信号, 当开关闭合,得到低电平信号。

	DI_STR	20	70	GND
	DI_STP	21	71	GND
	DIO0	22	72	GND
	DIO1	23	73	GND
1 I	DIO2	24	74	GND
	DIO3	25	75	GND

软件测试:

在 Device Manager 的 Test 测试界面中点击 Digital Input 标签,弹出下图:

😹 Advantech Device	Test - PCI-1755	BoardID=13, I/O	=ec00X	_ 🗆 X
Analog input An	alog <u>o</u> utput Digi t	tal input Digita	l outpu <u>t</u>	Cou <u>n</u> ter
Port No. Bit 7	4 3	0 Hex		
0 \Theta 🧉		0	\varTheta High	
			O Low	
				·
		<u>C</u> hange	device	E <u>x</u> it

用户可以方便地通过数字量输入通道指示灯的颜色,得到相应数字量输入通道输入的是低电平还 是高电平(红色为高,绿色为低)。例如,可将通道 0 对应管脚 DI1 与数字地 DGND 短接,则通道 0 对应的状态指示灯(Bit0)变绿,在 DI1 与数字地之间接入+5V 电压,则指示灯变红,如上图所示。

2.5.2 数字量输出测试

PCI-1755 的 DO 功能是 TTL 电平的数字量输出,默认输出状态为低电平,在软件中输出高电平时,可以在 DO 和 GND 之间得到+5V 左右的信号输出。

硬件接线:

测试时,直接用电压表测试 DO 和 GND 之间是否存在 TTL 电平的变化,即输出低电平 0 时,会在 DO 和 GND 之间得到 0V 左右的电压;输出高电平 1 时,会在 DO 和 GND 之间得到 5V 左右的电压。具体测试请参考下面的接线图:

软件测试:

在测试界面中点击 Digital Output 标签, 弹出下图:

∰Advantech Device Test - PCI-1755 BoardID=13, I/	0=ec00H
Analog input Analog output Digital input Digit	tal outputCou <u>n</u> ter
Port No. Bit 7 4 3 0 H	Hex 1 On (1)
Chang	ge device E <u>x</u> it

用户可以通过按动界面中的方框,方便的将相对应的输出通道设为高输出或低输出。高电平为 5V,低电平为 0V。用电压表测试相应管脚,可以测到这个电压。

以上是使用 Device Manager 软件的 Test 来测试 DI/O 的过程。

下一节将使用例程来测试 PCI-1755 板卡的高速 DIO 功能。

第三节 测试例程

Device Manager 驱动中的 All Example 示例是编程示例,旨在帮助用户使用板卡进行二次开发。用户可修改示例代码并将其保存在应用中。用户还可以使用示例开发一个新的应用。

支持 PCI-1755 板卡的例程有 9 种,分别为:

示例	说明
DI_SOFT	演示软件触发辅助 I/O 数字量输入函数
DO_SOFT	演示软件触发辅助 I/O 数字量输出函数
DI_INT	演示带中断的数字量输入包括模式匹配,状态改变,定时功能
DI_DMA_BM	演示用主控 DMA 进行数字量输入
DO_DMA_BM	演示用主控 DMA 进行数字量输出
Timer	演示定时中断功能
FDI_INFINITE_BUFFER	演示 Buffer 可设的高速 DI 采集
DIO_SOFT_DWORD	数字量端口位/字节操作
DIO_SOFT_PORTS	数字量端口功能
DI_SOFT_PORTS	数字量端口功能
DO_SOFT_PORTS	数字量端口功能

以上例程所在的默认的路径是: C:\Program Files\Advantech\Adsapi\Examples\

下面将对上述例程一一进行测试(以 VB 的例程为例)

3.1 DI_Soft (软件的方式读取 DI 值)

硬件接线:在 DIO0~7 任意管脚和 GND 之间外接一开关,板卡监测开关打开和闭合的状态。

	DI_STR	20	70	GND
	DI_STP	21	71	GND
	DIO0	22	72	GND
/	DIO1	23	73	GND
í 🗀	DIO2	24	74	GND
	DIO3	25	75	GND

软件测试:

在 C:\Program Files\Advantech\Adsapi\Examples\VB\DI_SOFT 里找到 DIsoft.exe 的例程,当通 道 7 和 GND 短接后,在 DI7 上可以得到低电平信号。

	•
运行结果	<u>.</u>

Digi	ital	In	put I	lemo				×
	٠					٠		
7	6	5	4	3	2	1	Ó	
								J
∟ Sar	nplir	ig Ra	ate —					1
0 (9	Stop]				10	(time	:/s)	
		_	_					1
	E <u>x</u>	it		Be	ead o	one (data	
				<u> </u>				

在上图中,对应的 DI7 获得了低电平信号。

3.2 DI_Int (中断方式读 DI 的值)

硬件接线:

	DIO0	22	72	GND
	DIO1	23	73	GND
	DIO2	24	74	GND
	DIO3	25	75	GND
	DIO4	26	76	GND
外接信号发生器	DIO5	27	77	GND
	DIO6	28	78	GND
	DIO7	29	79	GND
	DO_ACK	30	80	GND
	DO_REQ	31	81	GND

PCI-1755 的 DI0~7 都可以作为中断源,所以测试时,可以将信号发生器接到 DI3 和 DGND 之间, 设置信号发生器发出 1Hz 的方波信号,则可以在 DI0 上得到 1Hz 的中断信号。

软件测试:

在 C:\Program Files\Advantech\Adsapi\Examples\VB\DI_Int\PCI-1755 里找到 DI_Int.exe 的例程。 在程序界面中设置参数,本处全部采用默认设置。

启动 Start 按钮,采集开始,可以观测到在下图框中会1秒产生一组数据,如下图所示:

🐂 PCI-1755 interrupt events demo
000 : {PCI-1755 BoardID=13, I/O=ec00H}
Pattern Match Interrupt: 0 Pattern Match value: 0
□ Timer interrupt: 0 Counter 2 value(2~65535): 10000
Change Status Change Interrupt: 0 Change Status channel(0-31): 0
Auxiliary DI Interrupt Events DI interrupt signal condition Channel 7 6 5 4 3 2 1 0 Trigger Rising Rising
DI 0 interrupt: 0 DI 4 interrupt: 0
DI 1 interrupt: 0 DI 5 interrupt: 0
DI 2 interrupt: 0 DI 6 interrupt: 0
DI 3 interrupt: 0
Stagt Egit

运行结果: 每1秒出现一次数据,就表示 DIO 捕获一个中断信号。

以上界面中:

Pattern Match Intern 2t.	0	Pattern Match value:	0
Timer interrupt: 4	0	Counter 2 value(2~65535):	10000
📄 Status Change Inter <mark>6</mark> 🚈 🚽	0	Change Status channel(0-31):	0

其中:

红色框中表示可以使用模式匹配功能,首先在1中设置匹配值,选中左侧方框,则在2区域 显示匹配的个数;

绿色框中表示可以使用定时中断功能,首先在3中设置以10M作为基准时钟的脉冲个数,当 定时时间到之后,会在4种显示已经监测到几个中断定时时间了;

蓝色框中表示可以使用状态改变功能,首先在5中设置监测状态改变的通道,当设定的这个 通道的电平状态发生变化后,则在6种显示已经监测到几个中断了。

其中:

模式匹配中断事件: 板卡将比较高速 DI 输入值与模式匹配的值,当这两个值是相同的,产 生一个中断。模式匹配值编辑框只接受十六进制值,并仅限 32 位。

定时中断功能: PCI-1755 具有 8254 定时器。通道 2 可周期性地产生中断。8254-计数器是基于一个 10 M H Z 时钟。计数器 2 可以设置这个定时器的值。

状态改变功能: 当运行高速 DI 功能时,当通道的状态被改变(高到低或低到高),设备将 产生一个中断事件。Change Status Channel 是用来设置更改状态通道的通道号。有效值被限制 在高速 DI 通道(0-31)的范围内。

3.3 DO_StaticDO (软件的方式输出)

硬件接线:在 DIO0~7 任意管脚和 GND 之间,用电压表去监测这两个管脚之间的输出电平状态。

		DI_STR	20	70	GND
		DI_STP	21	71	GND
1		DIO0	22	72	GND
输出的	平	DIO1	23	73	GND
L.		DIO2	24	74	GND
		DIO3	25	75	GND
		DIO4	26	76	GND

软件测试:

在 C:\Program Files\Advantech\Adsapi\Examples\VB\DO_SOFT 里找到 DOSoft.exe 的例程。

测试时,操作界面中的按钮,表示在相应的 DO 端口输出高低电平。

۹,	Digit	al 0	utput	Demo					×
	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
				Ež	çit				-

运行结果:

当在软件中将通道上的按钮按下时,在输出的 DO 针和 GND 之间能得到高电平+5V 的信号输出。

3.4 DI_DMA_BM(高速 DI 输入功能)

硬件连接:

使用 DI_DMA_BM 的例程时,可以在通道和 GND 之间外接开关,当开关闭合时,通道上可以得 到低电平信号。

软件测试:

首先,需要在 Device Manager 的 Setting 界面中设置输入和输出的通道数,比如,设置通道为 32 路输入,可以这样设置:

000: <pci-1755 boar<="" th=""><th>dID=15,]</th><th>I/O=ECOOH,</th><th>Interru</th><th>up t=11></th><th>_ 🗆 🗵</th></pci-1755>	dID=15,]	I/O=ECOOH,	Interru	up t=11>	_ 🗆 🗵
Fast DIO setting	32 D 0	C 16 DI	/D0	© 8 DI/E	0
Fast D <u>I</u> Configu	ation		ninator nable	Ena	inator-
Fast Do Co <u>n</u> figu	ration		isable	C Dis	able
- Interrupt source configur	ation ——				
Change <u>s</u> tatus channel r	number (0-31)):	0		
Pattern match value (32	bits, Hex):		0		
<u>T</u> imer interrupt divider va	lue (2 ~ 655:	35):	10000		
Auxiliary DI interrupt sign	nal condition				
Channel <u>7</u> <u>6</u>	5	4 3	2		D
Trigger <mark>Rising Risir</mark> edge Falling Fallir	ig <mark>Rising</mark> Ing Falling	Rising Risin Falling Fallin	ng <mark>Rising</mark> Ing Falling	<mark>Rising</mark> Falling	Rising Falling
		<u>0</u> K	<u>C</u> anc	el	About

再点击"Fast DI Configuration..."按钮,设置 DI 的其它参数:

PCI-1755 Fast DI configur	ation	
Operation mode <u>N</u> ormal mode <u>8</u> 255 emulated handshaking <u>B</u> urst handshaking	Fast DI trigger source Start type selection © Software start © External signal © Pattern DI Stop type selection © Software stop © External signal © Software stop © External signal © Pattern DI © Pattern DI	gger source MHz MHz MHz Junter 0 ternal ue (2-65535): 10
Fast DI signal condition		
Name External Start External	Istop DI_REQ DI_ACH	Cloc <u>k</u>
Trigger Rising Hi-level edge Falling Lo-level	Hi-level Hi-level Lo-level Lo-level	Rising Falling
	<u></u> K	<u>C</u> ancel

其中:

Operation mode:

在这个界面中,操作模式有 3种: Normal, 8255 emulated handshaking, Burst handshaking。

这三种模式的含义是:

Normal 模式: Normal 模式的高速 DI 可以被视为一个异步操作。异步传输有其自身的时钟源,同时靠内部时钟触发来采集数据。因此,选择 Normal 模式需要选择触发源。其他模式则无需选择触发源,因为它们依赖于外部设备的触发频率。

正常工作模式,此模式不需要握手信号,所以此模式能达到最高 30M 的采集速度。

8255 emulated handshaking 模式:如果外部设备将数据传输到 PCI-1755,它将给板卡发送一个 DI_REQ 的信号。如果 PCI-1755 已经做好接收准备,它也将响应一个 DI_ACK 信号到外部设备,然后外 部设备将一个单位的数据传输到 PCI-1755。

这种模式是需要握手信号的,当每建立一次握手连接之后,就会采集一次,所以采集速度会大大 降低。保守来说,采集速度也就是几兆,达不到10M的速度。

Burst handshaking 模式: 如果外部设备想发送数据到 PCI-1755, 它将给板卡发送 DI_REQ 的信号。如果 PCI-1755 已经做好接收准备, 它也将响应一个 DI_ACK 信号到外部设备, 然后外部设备通过 EXT_CLK IN 管脚将数据传输板卡。

这种模式是只建立一次握手连接之后,程序会一直采集数据。这种模式的速度比 Normal 模式慢, 比 8255 emulated handshaking 模式快。

Start type selection:

Software Start: 使用软件启动方式使得设备开始发送数据,而无需任何其他约束。

External Signal: 板卡不会立即启动高速 DI 采集,而是等待,直到外部输入信号的外部启动信号 条件的满足才启动高速采集。

Pattern Match: 与 External Signal 类似,但它是等待模式匹配的事件的发生。首先需要在 Pattern Match Value 框中输入模式匹配值。

Stop type selection:

Software Stop: 当驱动给出停止命令后停止高速 DI 采集。

External Signal: 当驱动给出停止命令或外部输入信号满足停止信号条件。

Pattern Match: 与 External Signal 类似,但是它是通过设备捕捉模式匹配事件发生后来停止高速 DI 采集。

Trigger source:

触发源共 5 种: 30M、15M、10M、Counter 0、External。其中,前 4 种是使用内部时钟作为触发 源,第 5 种 External 需要在 EXT_CLKIN 和 GND 之间外接一时钟信号作为触发信号源。

Counter 0: 意味着使用 Counter 0 作为时钟源。Counter 0 是基于一个 10M 的时钟, 而驱动程序 将它分频得到最终的频率值。

Value:

当触发源选择使用 Counter 0 的时候,设置 Value 表示使用 Counter 0 作为时钟源的分频值。

使用 C:\Program Files\Advantech\Adsapi\Examples\VB\DI_DMA_BM 目录下的 DI_DMA_BM.exe 例程 用来实现高速数字量输入的 DMA 采集。打开 DI_DMA_BM.exe,选中 PCI-1755 板卡:

🐂 PCI-1755 FDI with eve	nts threading	
000 : {PCI-1755 BoradID=15 I/O=	ec00H}	Select Device
Device setting Operation mode Image: Normal Image: Normal Image: Data width Image: Start type Image: Start type </th <th>emulated handshaking be / start it for external HW signal it for Pattern Match be / stop for external HW signal Pattern Match</th> <th>© Burst handshaking Pacer source 30 MHz 15 MHz 10 MHz Counter 0 External source 12 MHz Value (2-65535): 10</th>	emulated handshaking be / start it for external HW signal it for Pattern Match be / stop for external HW signal Pattern Match	© Burst handshaking Pacer source 30 MHz 15 MHz 10 MHz Counter 0 External source 12 MHz Value (2-65535): 10
Running Event information Fast DI action: No a Buffer point: Transfered buffer: Over-run count: Cyclic out digital data	This program synchronizing Thread. 0 None 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	demonstrate the usage of g Fast DI function by events in ng is not full suport in VB . Using this demo program reful. ave before running your code, and not to set break gram, espicially the thread
<u>R</u> un <u>S</u> top SH	10 <u>w</u>	E <u>x</u> it

图 43 DI_DMA_BM 例程界面

运行结果:

测试时,将 PAO 接地,则在软件中得到下面的结果:

📑 Fast DI	data displaying	(start: 0)			×
<u>N</u> ext 1000!	Previous 1000!				
FFFFFFFE	FFFFFFE	FFFFFFE	FFFFFFE	FFFFFFE	
FFFFFFFE	FFFFFFE	FFFFFFE	FFFFFFE	FFFFFFE	
FFFFFFFE	FFFFFFE	FFFFFFE	FFFFFFE	FFFFFFE	
FFFFFFFE	FFFFFFE	FFFFFFE	FFFFFFE	FFFFFFE	
FFFFFFE	FFFFFFE	FFFFFFFE	FFFFFFE	FFFFFFE	
FFFFFFE	FFFFFFE	FFFFFFFE	FFFFFFE	FFFFFFE	
FFFFFFE	FFFFFFE	FFFFFFFE	FFFFFFE	FFFFFFE	
FFFFFFE FFFFFFE FFFFFFE	FFFFFFE FFFFFFE FFFFFFE FFFFFFE	FFFFFFE FFFFFFE FFFFFFE FFFFFFE	FFFFFFE FFFFFFE FFFFFFE FFFFFFE	FFFFFFE FFFFFFFE FFFFFFFE FFFFFFFE	
FFFFFFE	FFFFFFE	FFFFFFE	FFFFFFE	FFFFFFE	-
FFFFFFE	FFFFFFE	FFFFFFE	FFFFFFE	FFFFFFE	
FFFFFFE	FFFFFFE	FFFFFFE	FFFFFFE	FFFFFFE	

小贴士: 使用 DI_DMA_BM 例程测试时,也可以使用 8DI 或 16DI 采集。

当设置为 8bits DI 的数据宽度时,采集的结果如下所示:

🛢 Fast DI	data displaying	(start: 0)	
<u>N</u> ext 1000!	<u>P</u> revious 1000!		
FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE	FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE	FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE	FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE

注意:如果设置为 8bits DI 时,只能使用 PA 端口。

当设置为 16bits DI 的数据宽度时,采集的结果如下所示:

🛢 Fast DI	data displaying	(start: 0)	<u> </u>
<u>N</u> ext 1000!	Previous 1000!		
FFFEFFFE FFFEFFFE FFFEFFFE FFFEFFFE FFFEFFFE FFFEFFFE	FFFEFFFE FFFEFFFE FFFEFFFE FFFEFFFE FFFEFFFE FFFEFFFE	FFFEFFFE FFFEFFFE FFFEFFFE FFFEFFFE FFFEFFFE FFFEFFFE	FFFEFFE FFFEFFE FFFEFFE FFFEFFE FFFEFFE FFFEFFE
FFFEFFFE	FFFEFFFE	FFFEFFFE	FFFEFFFE FFFEFFFE

注意:如果设置为 16bits DI 时,只能使用 PA 和 PB 端口。

3.5 DO_DMA_BM(高速 DO 输出功能)

硬件连接:

测试时,可直接测量 PA/B/C/D 通道和 GND 之间的输出电平:

软件测试:

打开 C:\Program Files\Advantech\Adsapi\Examples\VB\DO_DMA_BM 目录下的 DO_DMA_BM.exe 例程用来实现高速数字量输出的 DMA 采集。打开 DO_DMA_BM.exe 例程,选择板卡及其他参数:

🐂 PCI-1755 - FDO 🖷	ith events th	reading		_ 🗆 ×
000 : {PCI-1755 BoradII)=151/0=ec00H}			Select Device
Device setting Operation mode	C 8255 emulated	handshaking	O Bur	st handshaking
 Data width 32bits DI 32 bits DO 16 bits DI/DO 8 bits DI/DO 	Start type Start type Wait for exter Stop type Stop type Stop type Vait for exter	nal HW signal nal HW signal	Pacer 30 15 10 Cou Ext	r source MHz MHz unter 0 ernal source III (2-65535): 10
Running Event information Fast D0 action: Buffer point: Transfered buffer: Under-run count:	No action 0 None 0	This program d synchronizing F Thread. Multi-threading programming. should be care Be ware to say modification co points at progra function.	lemonstra Fast DI fu Using this ful. /e before ode, and r am, espici	te the usage of nction by events in suport in VB s demo program running your not to set break ially the thread
<u><u> </u></u>	Stop		E <u>x</u> it	t

运行结果:

在 VB 程序中,首先将输出的数据依次放置在开辟的内存中,例程中设置输出端口的数据默认为: 0、1、2、3、4、5、6、7、8、9、10、…… 依次类推,直到 Buffer 大小的四分之一为止:

'Fill data for East DO action. For i = O To glBufferSize / 4 - 1 glDataBut(1) = 1 Next

测试时,将示波器的接到 PAO 和 GND 之间,则在示波器上可以得到 PAO 上输出数据的变化:

3.6 FDI_INFINITE_BUFFER (Buffer 可设的高速 DI 采集)

此例程主要是用来表示用户如何使用 Buffer 可设的高速 DI 来进行同步或异步采集。

硬件连接: 可参考前面高速 DI 的接线图

软件测试:

使用 C:\Program Files\Advantech\Adsapi\Examples\MFC\FDI_INFINITE_BUFFER\PCI1755\FdiDma\

Release 目录下的 FdiDma.exe 例程来实现此功能。

运行结果:

打开 FdiDma.exe 例程:

💑 Fdi Da a	×
Message	
	*
1	T
I	
	Clear
Device 2	-FDI
Device No.	Buf Size 64 MB 3
Open Close	Start Sync FDI Start Async FDI
	4 Exit

其中:

1表示:编辑框,用来显示消息信息;

2表示: 需要根据 Device Manager 中板卡的设备号来填写 PCI-1755 板卡对应的 Device Num;

3表示: Buffer 的大小, 单位是 MB;

4表示:退出程序的按钮。

在 Device No.中设置板卡对应的设备号,点击 Open 按钮,在 Message 框中出现: Device opened 的信息:

💑 Fdi Da a	X
Message 3	
Device opened.	
	Clear
Device 1	FDI
Device No.	Buf Size 64 MB
2	Start Sync FDI
Open Close	Start Async FDI
	Exit

设置 Buf Size 大小为 16MB, 启动开始采集的按钮: Start Sync FDI; 在 Message 框中将出现线面

的信息:

💑 F di Da a	×
Message	
Device opened. Start Synchronous FDL	
3 Finished, 16777216 byte Data saved at FDI. dat	s transfered.
	V
	<u> </u>
Device	FDI
Device No. 0	Buf Size 16 MB
	Start Sync FDI 2
Upen Llose	Start Async FDI
	Exit

同时,在C:\Program Files\Advantech\Adsapi\Examples\MFC\FDI_INFINITE_BUFFER\PCI1755\

FdiDma\Release 目录下会出现 FDI.dat 的文件,此文件中保存了采集的 DI 数据。

打开 FDI.dat 文件, 查看保存的数据:

打开文件																	
FDI. dat X	1																
	Q	1	2	3	4	5	6	7	8	9	ą	þ	ç	þ	ę	f	_
0000be90h:	F5	;															
0000bea0h:	F5	;															
0000beb0h:	F5	;															
0000bec0h:	F5	;															
0000bed0h:	F5	;															
0000bee0h:	F5	;															
0000bef0h:	F5	;															
0000bf00h:	F5	;															
0000bf10h:	F5	;															
0000bf20h:	F5	;															
0000bf30h:	F5	;															

在界面中先 Close 设备,在 Message 中会出现 Device closed 的信息,最后就可以 Exit 程序了。

💑 Fdi Daa	×
-Message	
Device opened. Start Synchronous FDI Finished, 16777216 byte Data saved at FDI. dat 2 Device closed.	s transfered.
4	v
	Clear
Device	FDI
Device No. 0	Buf Size 16 MB
Open Close	Start Sync FDI Start Async FDI
1	3 Exit

小贴士:此例程仅可以在 MFC 的例程中使用,其他语言不提供例程。

3.7 Timer (定时器功能)

硬件连接:无需硬件连接

软件测试:

使用 C:\Program Files\Advantech\Adsapi\Examples\Console\中的 Timer 例程。打开 TmrEvent.exe 例

程,填写 PCI-1755 对应的设备号 0。

运行结果:

界面中出现1秒钟一次的定时,定时时间到会有事件通知。

小贴士: 此例程仅可以在 Console 的例程中使用,其他语言不提供例程。

其他几种例程: DIO_SOFT_DWORD、DIO_SOFT_PORTS、DI_SOFT_PORTS、DO_SOFT_PORTS 由 于都是低速的 DIO 操作的程序,在此不再重复测试。

第四节 软件开发介绍

PCI-1755 板卡支持高速 DI 和高速的 DO 操作,现分别说明如下:

4.1 高速 DI 采集

DMA 方式的 DI 函数满足了块数据的高速传输。在这种方式下,数据在没有 CPU 干预的情况下在设备端口与内存之间进行传输。驱动会监视数据采集进程并适时发送事件告知数据传输状态。

1. 事件通知(推荐)

数据传输开始前,通过函数 <u>DRV_DeviceSetProperty</u>设置属性,如数据宽度,起始/停止类型,时钟源,buffer大小等等。首先通过函数 <u>DRV_EnableEvent</u>使能事件通知,然后调用 <u>DRV_FDIStart</u>函数启动数字量输入操作。驱动会适时发送事件告知数据传输状态。函数 <u>DRV_CheckEvent</u>可以用来查询触发事件类型并对数据进行处理。任何时候通过调用 DRV_FDIStop 函数都可以停止操作。

2. 无事件通知

数据传输开始前,通过函数 <u>DRV_DeviceSetProperty</u>设置属性,如数据宽度,起始/停止类型,时钟源,buffer大小等。然后通过 <u>DRV_FDIStart</u>函数起动带 DMA 的 DI 传输。反复调用函数 <u>DRV_FDICheck</u>查询采样状态。转换结束或其他任何时刻调用函数 <u>DRV_FDIStop</u>都可以停止传输。在这种采样方式下,无法通过事件通知来获得采样状态,唯一的办法就是通过调用 DRV FDIheck 函数查询。

4.2 高速 DO 采集

DMA 方式的 DO 函数可以满足批量数据的高速传输。在这种方式下,数据在没有 CPU 干预的情况下在设备与内存间传输。驱动会监视传输进程并适时发送事件告知用户当前传输状态。

1. 事件通知(推荐)

操作开始前,首先要通过 <u>DRV DeviceSetProperty</u>设置属性,如数据宽度,起始/停止位,时钟源, buffer 大小等等。然后调用 <u>DRV_EnableEvent</u>函数使能事件通知。调用函数 <u>DRV_FDOStart</u>启动 DO 传输。 驱动会适时发送事件通知当前传输状态。通过 <u>DRV_CheckEvent</u>函数可以查询触发事件类型并对数据进行 处理。任何时候调用 <u>DRV_FDOStop</u>函数都可以停止操作。

2. 无事件通知

操作开始前,首先通过函数 <u>DRV DeviceSetProperty</u>设置属性,如数据宽度,起始/停止类型,时钟源,buffer 大小等等。调用 <u>DRV FDOStart</u>函数启动带 DMA 的 DO 传输。反复调用函数 <u>DRV_FDOCheck</u> 来查询传输状态,最后当传输结束或者任何时候调用 <u>DRV FDOStop</u>函数来停止操作。

在这种传输方式下,无法通过事件通知获得传输状态,唯一得方法是通过调用 DRV_FD0Check 函数。

第五节 总结

下面将使用 PCI-1755 板卡的优缺点总结如下:

1. 采集速度问题:

优点: PCI-1755 是研华唯一一块高速的 DIO 板卡,可以实现最高 30M 的输入输出速度。

缺点: PCI-1755 板卡的输入输出速度只有 5 项可选,分别为: 30M、15M、10M、Counter0、External source。板卡的输入输出速度不能设置为连续的速度,比如,不能设置为 29M、17M、3M 等为输入/出速度参数。

2. 软件驱动问题:

优点: PCI-1755 的驱动可以支持 WIN 2000、XP、Vista 32 位的操作系统。

缺点: PCI-1755 的驱动不能支持 WIN 7/8 64 位的操作系统。

3. 连续采集问题:

优点: PCI-1755 在设置为 10M、15M、16M Buffer 大小的时候可以实现连续采集。

缺点: PCI-1755 的在设置为 30M 速度、32 通道、User Buffer 为 1M 时,由于受 PCI 总线宽度的限制,板卡不能实现连续采集,仅可以进行非连续采集。

4. 外部接线:

优点: PCI-1755 的高速 DI 和 DO 的通道一共 32 路,方向不固定,可以在软件中进行设置,这样 对于用户来说,比较灵活地设置输入输出的个数。

缺点: PCI-1755 的输入输出都是 TTL 电平的,不能接高于 5V 的输入或隔离输出。同时由于板卡不带滤波功能以及抗干扰功能,所以标配的连接线缆比较短,仅1米长。

内部资料,仅供参考!

28