LabVIEW™ 5 4% 1t 6 A8 TR FE T M
E%: LabVIEW™ Advanced Performance & Communication Course Manual
© National Instruments Corporation (December 2001)
JRZERIE: SimWe i Eitiz-ERINASARK
WiEE: BERAK¥EHETZR Mebusw 2004.12. (F—hR)

Bk, AR TR HK!

EH LU EL FINIZC, IR BB ZEG TR, 5 LR 0 R T IR KA 19 S
T2

HELE T2 —ELabVIEWZEREHTEEE , SRR LR E R A BHT THE,
AR TR X RS %, BWRRE P XREGIEIE, T EBERIH T BRI IR B T2
EHTHEHI% T, A TIEXT, HSFRE. 1M UT.0REGHEAE T X5IRATE, Fr
BHEERF X FRA HEN I 6550 -

BEARRR, FROHFIHIEEE: mebusw@163.com

R B

Lesson 1

Data Management and Synchronization

A. Event-Driven Programming.............ccecereeriereeieniieiene et eie e se e ees 1-2
B. Local and Global Variablesccoceeieriiiieiiieieeceec e 1-12
C. VI-Based Global Variablescccceeieiieiiiiieieiieie et 1-18
D. Advanced Synchronization Techniques..........ccccoeeerereeiiiiieneeee e 1-22
E. Synchronization of Tasks.........ccooieieiiiiiiiiieeeee e 1-26
Lesson 2

Improving Performance

A. Multitasking, Multithreading, and Multiprocessingcccceeevververreerreesreennne 2-2
B. Defining and Allocating Threads and Priorities in LabVIEWccecvvininene 2-5
C. Monitoring VI Performance Using the Profile Windowccccoceviniinnnenen. 2-8
D. Speeding Up Your VIS......ccoiiiieiiniieieiieieseeee ettt s esae e ennes 2-13
E. System MemOTY ISSUESc..eecuieriieiieiie ittt st e e enes 2-28
F. Optimizing VI Memory USEccccceeriirieriieiieniieieie ettt 2-31
Lesson 3

TCP/IP

A, Computer NEtWOTKS.eeuiiiiiieiteiecieeieet ettt ettt se e e eneas 3-2
B. Introduction to TCP/IP.......cc.oiiiiiieieee et 3-4
C. Client/Server MOdel.........cccui ittt 3-8
D. TCP/IP VIs and FUNCLIONSoouiiiiiiiiiiiiieieeeee et 3-13
E. LADVIEW WED SEIVET.....cciuiiuiiiiiiiiieiie sttt ettt 3-24
Lesson 4

DataSocket

A. Components of DataSOCKEtccevviiriiiiieiiecie e 4-2
B. DataSOCKEt VIS ...coueiiiiiiiiiiieieeeee e 4-5
C. DataSocket SErver MANAZETccccueviieierieeienieeierieereieeressessesessaessesssessesseenns 4-10
D. Front Panel DataSoCKetcceeieiiiiiiieieieeee et 4-14
E. Variant FUNCHONS.cooiiiiiiieieiieee ettt s 4-15
F. Bi-directional COMMUNICALIONccveeieriieierieeieriieieete et sieete et et sieeaeseeeeeeeeeneas 4-22
G. Reading and Writing Data from Other Sources.............ccoeveverieciesenieneeeeeeee. 4-27

H. Creating Interactive Web Pages Using DataSocket...........ccoceveroiiiniiniinnnenen. 4-29

Lesson 5

VI Server

AL WRhat 1S VI SCIVEI?....uiiiiiiiiicieeeee ettt ettt et st saneeere e 5-2
B. VI Server Programming Modelcoooiiiiiiiiiiiie e 5-5
C. VI Server FUNCHONSc.coouieeiieiiesiiieieeiee et esteesreesteesaesteessaesaeessaessseesseesssesnss 5-6
D. Strictly Typed VI ReflUMS.......ccccuieiiiiiiieiieiecie ettt 5-17
E. Remote COMMUNICALIONervervirieeieeienieieeieteeteeteetestesee st seeseeteneeneeseeneeresneeeens 5-23
F. VI Server Configuration for External Applications............cccceveeveereenieereenvennnen. 5-24
Lesson 6

Calling and Creating Shared Libraries (DLLs)

A. What is a Shared Library/DLL7........ccccieiiiiiiiiieiece et 6-2
B. Accessing Shared LibrarieS/DLLSccccccceviiecieniieieieeieiieieie e eeae e 6-4
C. Debugging Call Library Function EITors..........cccccovieeiiiienenieieieieeeee e 6-19
D. Building DLLSs in LabVIEWc.ooiiiiiiiiiiiiee e 6-20
E. Building DLLs on Other Operating SyStemS..........cceeeueriierieneenieneeieeeesie e 6-24
Lesson 7

ActiveX Automation

AL OLE and ACHVEX ..ouiiiiieiiiieiieeiie ettt ettt s a e aaeeaseesbeeesneesreeennas 7-2
B. ActiveX Features in LADVIEW.......cccooviiiiiiiiiiiiecie et 7-5
C. LabVIEW ActiveX Automation SEIVET..........ccerueuerieeeieieieeeeieeiesieniesresieeeneens 7-6
Lesson 8

LabVIEW ActiveX Automation Client and ActiveX Container

A. LabVIEW as an ActiveX Automation Clentccccevvevieniecieneeieieeieseeenenns 8-2
B. ActiveX Automation Client VISccccooiiiiiiiiiiiieceece e 8-3
C. Programming Model for Automation Functionsc.ceeceveruerueneieneeeenennens 8-4
D. ActiveX Variant to LabVIEW Data............ccooeviieiiiiiiiiiicieeeieeceeee e 8-5
E. Automation with LabVIEW and Microsoft EXcelccocooeviiiiiniiiiiiccieeieenee 8-6
F. Remote AULOMALION.......c.cccviiiieitiieieeiteeeteete e et ete e st ereeveesereereeebeereesrneesneenes 8-10
G. ACtIVEX CONAINETS.cuviiviiieiieieeetie et cteeeteeeee e e eteesereeeteestaeeereeseeeeeveesaeeesseennes 8-12
Lesson 9

Error Trapping Techniques

A. Error Trapping BasiCS.......ccuieciiiiiieiieiee sttt et et esieesveesveeseaesseesssessneenns 9-2
B. Debugging BasiCsc.cccveiiieiiieiieiieieeste ettt eie et ve e ve e s e s e ae e 9-3
C. MEMOTY LEAKSviiivieiieciiieiie ettt sttt b e b e ebeessbeesneennneas 9-6
D. Multithreading EITOTSccovviecieriieieiiieie sttt eiesteeve e esseseessessaessesssessesssessens 9-11

E. Using Configuration Files...........ccouieeiiriiiiiiiieieniiciece et 9-15

Lesson 1
Data Management and Synchronization

Filter and Notify Events

= Timeout There are two types of events—notify and filter. Notify events tell
T LabVIEW that a user action has already occurred, such as when a
Tirne user changes the value of a control. For example, you can write a
VI that notifies the Event structure on the block diagram when the

user clicks a button on the front panel. Because the value changes
when the user clicks the button, the Event structure is notified. The Event structure can
handle multiple notify events at one time. If you configure a single case to handle
multiple notify events, only the data that is common to all handled event types is
available. Filter events allow control over how the user interface behaves. With filter
events, you can validate or change the event data before the user interface can process it,
or you can discard the event data entirely, preventing the change from affecting the VI.
For example, you can configure a Menu Selection event that does not allow the user to
interactively close the front panel of the VI. You also can configure a Key Down event to
modify all characters typed into a string control so they are uppercase, or you can modify
the event to filter unwanted characters. The existence of terminals on the right side of the
Event structure, such as the Discard terminal, identify a filter event.

Note If you configure the Event structure to handle menu events, and have the Get

Menu Selection function configured for the same menu item, the Event structure takes
precedence and LabVIEW ignores the Get Menu Selection function. In any given VI
you should use either the Event structure or the Get Menu Selection function.

AWEFE. BHMEUF LabVIEW — DM MECE R AE . TR T LA 2
ZANEAE, X A A AR R A T . SIEEHZREE) RV
P P S AT N o R AT CLAE R P FE i AL BR =R 2 B oA, AR BB SR A
WRACE Event structure ACBESZ FLE A, JFKS Get Menu Selection function pF UL &
Y5 —3E I, LabVIEW AXACEEEE— AW ST » 76 VI PN YER A Event
structure X ff ff§ Get Menu Selection function

Avoid Overusing Local and Global Variables
Local and global variables do not follow the general rules of dataflow
@ programming, which can lead to race conditions and make it difficult to
debug your program. In addition, local and global variables copy data
during reads and do not reuse data buffers as subVI terminals do, which can lead to
inefficient memory use. When you build subVlIs, you create a connector pane that
describes how data is passed to and from the subVI. In contrast, local and global
variables can be written to or read from at any point in a VI—Ilocal variables from within
the same VI and global variables from within all VIs currently running. In memory, these
variables use data buffers that cannot always be reused. Newdata buffers are generated
depending on how you use the local or global variable.

Jai il A4 AR e ANRE T AT, BRI A 0 BB A A7 O B A . T DA
VIHE R e, 1] BEid iRace Condition.

Local or global variable cannot be read in place in memory without making copies,
because the other process that is accessing the local or global variable could write to the
buffer after you have read the value. This means that reading data from a local variable
creates a new buffer for the data from its associated front panel object. If the data buffer
for the extra copy is large, you will use much more memory than intended. As a result,
you should avoid using local variables to read large data sets.

A global variable is similar to a subVI in the way you create them, with one important
difference—the operating system can reuse the data buffers used in a subVI after the
subVI finishes executing. Global variables always make a new copy of their data buffers
whenever you read from the global. Avoid overusing global variables and consider using
data management subVIs that minimize the number of block diagrams that manipulate
the entire global variable data set.

You can avoid race conditions by using a subVI instead of a global or local variable. If
you call the same subVI from two different places, by default, LabVIEW does not
execute that subVI in parallel. Therefore, only one call to a subVI executes to completion,
then the other call executes. You can avoid race conditions by placing all the operations
that modify a global variable inside a single subVI. All operations to that global variable
data are performed to completion before another call to the same subVI modifies the
global variable data.

P A LabVIEW A2 [A] I AT 5 Sub VI, Jf HSubVIAI = HI A AE, Fr AHISubVI AR
global or local variable i] DL 2% % Jf- H i #uRace Condition.

Data Exchange & Synchronization

You can use the Queue and Notifier functions to pass data between parallel block
diagrams and pass references to subVIs. The internal routines in LabVIEW have been
optimized, so no polling is necessary.

When working with different tasks in parallel, you might need to coordinate tasks to
execute at the same time. This coordination is know as synchronization. If one task is
dependent on one other task, you can create subVlIs for each and wire them in a
LabVIEW block diagram. Other techniques are necessary if you want to wait at some
point for some other tasks before continuing.

1 FH Queue and Notifier functions?E P4 AN T-ATHE B 4% 33 B 5% 7] SubVIs 4412 5 |
H, v LUEE S 581 (Poll) o

1 FH global variables, notifiers(ifli 1), queues(BA %)), semaphores(Jif i), rendezvouses(4E
4 15 and occurrences(K). K)20 25 T0iAT- 55

Occurrences# A H , HAREE S fE AT RAEHA . Semaphores and rendezvous

A LUTE G G BRAG A

—-=

-

You use the Queue functions to store a set of data that can be passed between
multiple loops running simultaneously or between VIs. Queues work best when one
process reads data from the queue while multiple processes write data to the queue. When
you create a queue, you specify whether the size of that queue is bounded and whether to
remove data from the beginning or the end of the queue. Data is stored in string format,
so you must flatten other data types to a string before being written to the queue. You can
use queues to let parallel tasks know when some data has changed.

Enqueus Element

Obtai __ [Release Queue|
"""" : | S
: B0

lement |

tectec | n : et v

- ¥ You use the Notification functions to enable one process in an application to tell
one or more other processes to start running. The Notification VIs also store and send
message data, so you can either send strings or flatten any other data types to strings to
transfer data between parallel processes. The notification VIs can replace global or local
variables because you can pass data back and forth between them. The notification VIs
also remove the possibility of race conditions because each process waits until
notification has been received before it executes.

aveform

Note If several VIs send a notification to the same notifier or if a VI sends multiple
notifications in a quick succession, the readers always receive the last notification sent.

A n : Sttty

A n : Sttty

** . .

¥ You use Rendezvous to allow multiple tasks to synchronize with one another.
When you have multiple tasks that run in parallel, you might want them to wait for each
other at some point before proceeding. You use the Rendezvous VIs when you need
multiple tasks to be synchronized at a certain place in the application. Each task that
reaches a rendezvous waits until all other predetermined tasks reach the rendezvous point,
at which point all the tasks continue execution. You use the Semaphore VIs to protect
access to a global variable resource by allowing only one task at a time to access the
global variable resource. The following are several advantages to using rendezvous to
synchronize data.
* There is no polling involved.

* You can pass references to subVls.
* You can abort infinite waits.

_;:I counter value
[[®counter |—BEZ]] stop

Ea)

¥ ToOoOoOooo00o0o00O0o0o000n

[® counte > @counte]

OO0 o000o0000o0oonn

f TOoooDooo0oDoo0o0ooor

[® counter [@counte]

OO0 o000o0000o0oonn

¥ Use Semaphores to protect access to shared resources, such as groups of global
variables, instruments, or files. In general, you can use semaphores to avoid race
conditions associated with multiple parallel VIs modifying global variables or accessing a
common instrument or writing to a common file. You use the Create Semaphore VI to
create a semaphore, or mutex, and you define the number of tasks that can access the
resource at any given time. Each time LabVIEW accesses the semaphore, that number is
decremented. When the number is zero, no other task can access the global variable
resource until another task has finished. Tasks use the Acquire Semaphore VI and
Release Semaphore VI to gain and lose access to the global variable resource. The
Destroy Semaphore VI deletes the semaphore when you no longer need to access the
global variable resource. The following are several advantages to using semaphores to
synchronize data.
* There is no polling involved.
* You can pass references to subVls.
* You can abort infinite waits.

] ¥ You use the Occurrence functions to put a portion of a block diagram to sleep
while other tasks are running. The running tasks can call the Set Occurrence function at
any time. Any loop or code that is using the Wait on Occurrence function will then
execute. Occurrences are very similar to the Notification Vs, except Occurrences
functions do not pass any data between themselves.

1000000000 ooocn

mait on Occurrence|

—b

Ooooooooooooon

aveform Chart

kaenerate
Ccurrence

=]

False

1
e
; ;

a[_:.:) m‘
hile Loop Counter

| g5

There are advantages and disadvantages to using occurrences to synchronize data.
* There is no polling involved.

* You can pass references to subVls.

« It can be difficult to abort infinite waits.

* You cannot unset an occurrence.

Lesson 2
Improving Performance

Defining and Allocating Threads and Priorities in LabVIEW

Multitasking, multithreading, and multiprocessing are different technologies, but the
terms for these technologies are often used interchangeably. Although LabVIEW
automatically handles the multithreading of VI execution, you can modify the Priority
and Preferred Execution System settings to control which threads are allocated to a VI.
You can find these settings on the Execution page of the File»VI Properties dialog box.
LabVIEW uses default settings for execution systems and threads, which eliminates the
need for you to create, start, or stop threads and still leaves a large amount of flexibility.
The priorities and execution systems shown in the VI Properties» Execution dialog box
define the different threads available.

Note Subroutine priority VIs always use the execution system of their calling VI.
Background priority VIs do not have a thread allocated to them and use the next higher
priority threads when nothing else is available to run.

Note In a multiprocessor environment, thread allocation is dynamic and depends on
which operating system you are using. Therefore, there is no straightforward way to
determine which threads are running at any instant.

Monitoring VI Performance Using the Profile Window

You can use the Profile window to analyze how your application uses execution time and
memory. The Profile window displays the performance information for all VIs inmemory
in an interactive table format. From thewindow, you can choose the type of information
to gather and sort the information by category. You also can monitor subVI performance
within different VIs. To show the Profile window, select Tools» Advanced»Profile VIs.

Many of the options in the Profile windoware available only after you begin a profiling
session. During a profiling session, you can take a snapshot of the available data and save
the data to an ASCII spreadsheet file. The timing measurements accumulate each time
yourun a VI.

Note All statistics measured in a profiling session are collected for a complete run

of'a VI, not a partial run of a VI.

I SHBEVFOT K VIR HEANIEAT I DL, I ARRE—HB 20 BRE—Bir B

Speeding Up Your Vis------
Input/Output

Input/Output (I/0) calls generally take more time than a computational operation. For
example, a simple serial port read operation can have an associated overhead of several
milliseconds. This overhead is present not only in LabVIEW but also in other
applications because an I/O call involves transferring information through several layers
of an operating system. The best method of reducing this I/O overhead is to minimize the
number of I/O calls you make in your application. Structure your application so that you
transfer larger amounts of data with each call instead of making several I/O calls that
transfer a small amount of data.

For example, consider creating a data acquisition (DAQ) application that acquires 100
points of data. For faster execution, use a multi-point data transfer function, such as the
Al Acquire Waveform VI, instead of using a single-point data transfer function, such as
the AI Sample Channel VI. To acquire 100 points, use the Al Acquire Waveform VI with
an input specifying that you want 100 points. This is faster than using the Al Sample
Channel VI in a loop with a wait function to establish the timing.

device PNy]
cguling Y aveform. vi
i—\ =
h HULT FT
channel el T
/0]
pointz 100

K

Single-Point Data Transfer (Slower Method) Multiple-Point Data Transfer (Faster Method)

In the previous block diagram, overhead for the Al AcquireWaveform VI is roughly the
same as the overhead for a single call to the Al Sample Channel VI, even though it is
transferring much more data. In addition, the data collected by the Al Acquire Waveform
VI uses hardware timers to control the sampling. Calling Al Sample Channel VI in a loop
does not provide data collected at a constant sample rate.

N H LG s SRR T AETE 2 I) S/ DRSNS 5 1 e RO AT B AL 126
Z s, M b I/ORE

Screen Display

Updating controls on a front panel is another time-consuming task in an application.
Although multithreading helps to reduce the effect that display updates have on overall
execution time, complicated displays, such as graphs and charts, can adversely affect
execution speed. This effect can become significant on Macintosh, which does not
support multithreading. Although most indicators do not redraw when they receive data
values that are the same as the old data, graphs and charts always redraw. To minimize
this overhead, keep front panel displays simple and try to reduce the number of front
panel objects. Disabling autoscaling, scale markers, and grids on graphs and charts
improves their efficiency.

The design of subVIs also can reduce display overhead. If subVIs have front panels that
remain closed during execution, none of the controls on the front panel can affect the
overall VI execution speed.

As shown in the following block diagram, you can reduce display overhead by
minimizing the number of times your VI updates the display. Drawing data on the screen
is an I/O operation, similar to accessing a file or GPIB instrument. For example, you can
update a waveform chart one point at a time or several points at a time. You get much
higher data display rates if you collect your chart data into arrays so that you can display
several points at a time. This way, you reduce the amount of I/O overhead required to
update the indicator.

times to get 100 points
1 EII
[N

&1 5 arnple Channel vil device N]
oNE T waveform &1 S ample Channelwi] || [avefom
o chart oNE BT chart
= v
m S lj

Single-Update Charting (Slower Method) Multiple-Update Charting (Faster Method)

LI TR PR 42 A A1 A Y RN TR) A o B S R 2 B, e S 8
MRS o

SubVI Overhead

Each call to a subVI involves a certain amount of overhead. This overhead is fairly
small—tens of microseconds—especially when compared to I/O overhead and display
overhead, which can range from milliseconds to tens of milliseconds. However, if you
make 10,000 calls to a subVI in a loop, the overhead could significantly affect your
execution speed. In this case, consider embedding the loop in the subVI.

Another way to minimize subVI overhead is to turn your subVlIs into subroutines by
selecting Execution from the top pull-down menu in the File» VI Properties dialog box
and then selecting Subroutine from the Priority pull-down menu. However, there are
some trade-offs. Subroutines cannot display front panel data, call timing or dialog box
functions, or multitask with other VIs. Subroutines are generally most appropriate for VIs
that do not require user interaction and are short, frequently executed tasks.

SR HISub VI 35— AN Z /N THAH, (HOUCRKEIRH], X8I AR,
W LA SubVIBE BN FRERF . XKk, A ABESL AT IR, ANBE I H I TR) A 1%
HERR L, ASANHAVIEAT 24555 . — BaEHT A S R Ftii, /MBS AT
HIAESS

Unnecessary Computation in Loops

Avoid placing calculations in loops if the calculation produces the same value for every
iteration. Instead, move the calculation out of the loop and pass the result into the loop.
For example, consider the following two block diagrams. The result of the division is the
same every time through the loop. Therefore, you can increase performance by moving
the division out of the loop.

Unnecessary Computation in Loop (Slower) Only Necessary Computation in Loop (Faster)

Also, avoid accessing local and global variables unnecessarily in loops. For example, the
following first block diagram wastes time by reading from the global variable and writing
to the global variable during each iteration of the loop. If you know that the global
variable is not read from or written to by another block diagram during the loop, consider
using shift registers to store the data, as shown in the following block diagrams.

[[ooodHR [o0a—

Frequent Access to Global Variable (Slower) Minimum Access to Global Variable (Faster)

Notice that you need the shift registers to pass the new value from the subVI to the next
iteration of the loop. Beginning LabVIEW users commonly omit these shift registers.
Without using a shift register, the results from the subVI are never passed back to the
subVI as the new input value, as shown in the following block diagram.

om0}

In the previous block diagram, the global variable is read once before the loop begins,
and the same value is passed to the function 10,000 times. The result of the loop is the
same as if you had written the code as shown in the following block diagram.

WEREE A F— 8, BAE I BEEAZ Sk,
Fiak, R LR N Vi i) local and global variablesH- ANW ol HoAE, 25 & H
shift registers{t % .

Parallel Diagrams

When several loops run in parallel on a block diagram, LabVIEW changes among the
loops periodically. If some of these loops are less important than others, use the Wait (ms)
function to ensure that the less important loops use less time. For example, consider the
following block diagram.

Search
10 Array

I ;---:??. Mathing

i me ¢ |Pressed| 3

waveform chart

The two loops run in parallel. One of the loops acquires data and must execute as
frequently as possible. The other loop monitors user input. In the previous block diagram,

both loops get equal time. The loop monitoring the user input can execute several
hundred times per second. In reality, this loop needs to execute only a few times per
second because the user cannot make changes to the interface very quickly. You can call

waveform chart Dption 1 Search
= 10 Array

E_ Mothing| 3
Presszed

=1

Option 3| it [

the Wait (ms) function in the user interface loop to give significantly more execution time
to the data acquisition loop, as shown in the following block diagram.

HE B ZASPAT OGN , LabVIEWRS & B () D146 o W SR B Leg IR A 4 H 2L,
¥ H
Wait (ms) function /> EATHT b HI R[] o

Reentrancy and SubVI Memory Use

Another setting you should remember when you are concerned with memory use in a
subVI is the Reentrant Execution option in the VI Properties window. You can use
reentrancy to create a new data space for each instance of the VI. This means that if your
data space is already very large, you will get a copy of it if you have reentrancy enabled.

The memory monitoring tools in LabVIEW do not report information on reentrant VIs.
So you must keep track which subVIs have this feature enabled. Reentrancy is usually
used when you are calling a subVI in different locations at the same time and that subVI
is storing data in an uninitialized shift register between each call. Otherwise, you might
not need to configure subVlIs for reentrant execution.

BHEAPATIET, & SubVIFEEA LB — MRS 8], e FAL A
Al —~SubVI, Jf HAEE>SubVIFE AR IS AL A A7 a5 HH ORAE T 2 (e o Bt
LAk AN IR

Optimizing VI Memory Use

(Windows, Sun, and UNIX) LabVIEW allocates memory dynamically, taking as much as
needed.

(Macintosh) LabVIEW allocates a single block of memory at launch time, out of which
all subsequent allocations are performed. If LabVIEW runs out of memory, it cannot
increase the size of this memory pool. Therefore, you should set this parameter as large
as possible.

(Windows and Macintosh) You can use virtual memory to increase the amount of
memory available for your applications. Virtual memory uses available disk space for

RAM storage. On the Macintosh, you allocate virtual memory using the Memory Control
Panel. Windows, Sun, and UNIX automatically manage virtual memory allocation.
LabVIEW does not differentiate between RAM and virtual memory. However, accessing
data stored in virtual memory is much slower than accessing data stored in physical RAM.
Virtual memory can help run larger applications, but it is probably not appropriate for
applications that have critical time constraints.

VIs have the following major components:

* Front panel

* Block diagram

* Code—block diagram compiled to machine code

* Data—control and indicator values, default data, block diagram constant

data, and so on.

When you load a VI, LabVIEW loads the front panel, the code, if it matches the platform,
and the data for the VI into memory. If the VI needs to be recompiled because of a
change in platform or in the interface to a subVI, LabVIEW also loads the block diagram
into memory. LabVIEW also loads the code and data space of subVIs into memory.
Under certain circumstances, LabVIEW also loads the front panel of some subVls into
memory. For example, if the subVI uses Property Nodes, LabVIEW must load the front
panel because Property Nodes manipulate the characteristics of front panel controls.

As shown in the following figure, you can save memory by converting some of your VI
components into subVlIs. If you create a single, large VI with no subVls, the front panel,
code, and data for that top-level VI end up in memory. If the VI is broken into subVls,
the code for the top-level VI is smaller, and only the code and data of the subVIs are in
memory. In some cases, you might actually see lower run-time memory use.

block block block
front panel diagram front panel diagram front panel diagram
code data space code data space code dafa space
Top-Level VI SubVI SubVl
always resident
resident when necessary

Note When monitoring VI memory use by selecting File»VI PropertiessMemory
Usage, be sure to save the VI before examining its memory requirements. The Undo
feature makes temporary copies of objects and data, which can increase the reported
memory requirements of a VI. Saving the VI purges the copies generated by Undo,
resulting in accurate reports of memory information.

7E4% HFile» VI Properties»Memory Usage ! #7748 G DL HT, S6IRFFVIe RIA
Undo2x 5 KA SR EHE IR I AT, PRAEVINT DAV BRIXSEEIA, I T 46 my N A7 45 S
s R

Guidelines for Better Memory Use

Use the following guidelines to create VIs that use memory efficiently.

* Break VIs into subVIs wherever it is practical. This enables LabVIEW to reclaim subVI
data memory when subVIs are not executing.

* Do not overuse global and local variables. Reading global or local variables generates
copies of the data in the variable.

* On open front panels, display large arrays and strings only when necessary. Indicators
on open front panels retain a copy of the data that they display.

* [f the front panel of a subVI is not displayed, do not leave unused Property Nodes on
the subVI. Property Nodes cause the front panel of a subVI to remain in memory, which
increases memory use.

* When designing block diagrams, watch for places where the size of an input is different
from the size of an output. For example, frequently increasing the size of an array or
string using the Build Array or Concatenate Strings function, generates copies of data,
which increases the number of memory allocations LabVIEW must perform. These
operations can fragment memory.

* Use consistent data types for arrays and watch for coercion dots when passing data to
subVlIs and functions. When LabVIEW changes data types, the output is a new buffer.

* Do not use complicated, hierarchical data types, such as arrays of clusters containing
large arrays, strings, or clusters containing large arrays or strings. Refer to the Simple
Versus Complicated Data Structures section later in this lesson for more information
about designing efficient data types.

o CKEVIsHME A SubVIs, UIT LabVIE W i i 7] £ 25 1) o

 2Hglobal or local variablesHi £ 56 = A Gl AT, B AASEEIS FEATH]

* Indicators{T: W /s I 23 7E W AF PR B mIAS, Bt AR A W KB 745 e

* Property Nodes2s T SSubVII i AR B 7E A AFEH, BEINAAEFT4S, B LA 4 TR
AN 7R N AN L5 B R AT H) Property NodesfESubVIH! .

o VERRATNG HORNANE T, K RIS, SN AR I, 2 N AR
Fro B, Sl H Build ArrayZ{ Concatenate Stringsb& ZK Y flarray Bstring 1) K
/N

o NEAALT AR A N AR . 3 R om SR A, AT BT R G2 XA A i i

o ANEATHENR, ZRMEIRRA, it & R84, Ffrd, g, sias
KB, FFFH %,

Assembling and Processing Arrays

LabVIEW stores arrays of numeric elements in contiguous blocks of memory. If you use
For Loops to assemble these arrays, LabVIEW can determine the amount of memory

needed and allocate the necessary space before the first iteration. However, if you use
While Loops, LabVIEW cannot predetermine the space requirements you will need.
LabVIEW might need to relocate the entire buffer as the array grows in size. Each
resizing requires the operating system to allocate a new buffer and then copy the contents
of the old buffer into the new, larger buffer. The more resizing that occurs, the more time
execution takes. The time needed for relocation increases with the size of the array.
Therefore, you should use For Loops to assemble arrays when possible rather than using

While Loops or concatenating arrays with the Build Array function.
Initialize Array, While Loop
to Replace Elements

Initialize: Array Array Datz

Murnber of
Array Elements

For Loop vs. While Loop
If you can predetermine the maximum size of the array to be built, then you can initialize
this array and pass it into the While Loop, as shown in the following block diagram. Once
inside the While Loop, each element can be updated or replaced as needed. This is
somewhat efficient because the array does not need to be reallocated once it is passed

into the While Loop. This is still not as efficient as the For Loop or Initialize Array
function.

Mumnber of Aray For Loop, *wihile Loop,
Elements Auto Indexing Mumber of Auto Indexing
=== Array Elements

Avoid using the Build Array function inside a loop, as shown in the following figure.
Every time a new value is appended to the array, LabVIEW must reallocate the buffer

and copy the entire array to the new location. Thus, execution times for the Build Array
function are the slowest.

Murnber ot While Loop,
MHumber of For Loop, .
Array Elements Build .-ﬁ.r::la_l,l Array Elements Build Array
== N —
. i
- Initialize Array s sy Data
=+ | = | F132
D Iy S 5z e = [

Inplaceness
When possible, the LabVIEW compiler reuses a function’s input buffers to store its

Replace Aray Subszet . o
@ @ Build Array To Daouble Precizion Float
= . EZZ:[EE
o kdualkiply | ==
) Spreadsheet String To Aray
Concatenate Strings]
Increment = H E
e & Match Pattern
..... o~
~=-i5IH

Functions that Reuse Buffers Functions that May &llocate New Buffers Functions that Allocate New Buffers
output. This buffer sharing is called inplaceness. A function output reuses an input buffer
if the output and the input have the same data type, representation, and, in arrays, strings,
and clusters, the same structure and number of elements. Functions capable of
inplaceness include Trigonometric and Logarithmic functions, most Numeric functions,
and some string and array functions, such as To Upper Case and Replace Array
Element. A function that shifts or swaps elements of an array, such as Replace Array
Element, can reuse buffers. Some functions, such as Array Subset and String Subset,
might not copy data but might pass pointers to the sub arrays or substrings. In the
following illustration, A, B, C, and D identify individual buffers. Build Array and
Concatenate Strings are special functions. They operate in place when they can, but
sometimes they must allocate new buffers.

Coercion and Consistent Data Types

Of the following three methods to create these SGL arrays, one is correct and two are
incorrect. Recall that each DBL value requires 8 bytes of memory, while each SGL value
requires 4 bytes of memory.

OGS BORS PE AL, I o ZBURIDOBURG B T S8, M SR T 24
Method 1 (Incorrect)

The following block diagram might be your first attempt to save data space memory. You
might think changing the representation of the array on the front panel to SGL can save
space memory. However, this method does not affect the amount of memory needed by
the VI because the function creates a separate buffer to hold the converted data. The

coercion dot on the SGL array terminal indicates the function created a separate buffer to
hold the converted data.

FP copy of &
i

Data 24.3KB

Method 2 (Incorrect)

Method 2 is an attempt to remove the coercion dot by converting each array to SGL using
the To Single Precision Float function located on the Functions»Numeric»Conversion
palette. However, this method also increases the size of the data space because the
function creates two new buffers, C and D, to hold the new SGL arrays.

Data 28.3KB

Method 3 (Correct)

Method 3 reduces the size of the data space considerably, from 28.3 KB to 12.7 KB. This
method converts the Random Number (0-1) function output to SGL before the array is
created. Therefore, this method creates two SGL arrays at the border of a For Loop rather
than two DBL arrays.

A FP copp of &

e

Data 12.7KB

Simple versus Complicated Data Structures

Simple data types, which include strings, numbers, Boolean data types, clusters of
numbers or Boolean data types, and arrays of numbers or Boolean data types, are
referenced in memory. Other data, referred to as nested, or complicated data, is more
difficult to reference.

For the best performance, avoid creating complicated data structures. Performance can
suffer because it is difficult to access and manipulate the interior elements without
generating copies of data. Therefore, keep your data structures as flat as possible. Flat
data structures can generally be manipulated easily and efficiently.

AT e AEVERE, A SRR B A o DR A S LA) AR A o

Consider an application in which you want to record the results of several tests. In the
results, you want a string describing the test and an array of test results. One data type
that you might use to store this information is an array of clusters containing a description
string and an array of test data, as shown in the following front panel.

Now, consider what you need to do to change an element in the Test Data array. First,
you must index an element of the overall Tests array. For that element, which is a cluster,
you must unbundle the elements to get to the array. You then replace an element of the
array and store the resulting array in the cluster. Finally, you store the resulting cluster in
the original array.

Test Data

Test to Update Replace Amray Subszet

ezt Datz
£ | L]

Position to Update —

£ NP cram® e "
e W alue
o Udew s

o o Jove

Tout Test Besults
E’I I = ool

L= Eﬁ . ¢ [Test Data BB e Datalmp
CE -t 1
nositon to update]|
[132
e valug
tezt bo update [oEL
[132

An example of this is shown in the following block diagram. Copying data is costly both
in terms of memory and performance. The solution is to make the data structures as flat
as possible. In this case, you could store the data in two arrays, as shown in the following
block diagram. The first array is an array of strings. The second array is a 2D array,
where each row is a given test’s results. In the following example, the front panel
contains new controls to store the data, and the block diagram performs the same change
to the test data, as shown in the previous block diagram.

Speed up Vis

* Local variables increase memory requirements and slow run speed, especially when
they are accessed in loops.

* Create arrays in an efficient manner. When generating arrays inside loops whose
representation must be changed, change the representation inside the loop, not after.

* Minimize the amount of file I/O operations performed in an application. Open and close
a file only when necessary.

* Avoid unnecessary computations and data conversions, especially in loops.

* Minimize and simplify front panel displays.

» Use simple data structures that are as flat as possible.

*Avoid using autoscaling on graphs and charts.

*Update graphs and charts several points at a time, not one at a time.

*Force less important parallel tasks to wait, using the Wait (ms) function, so more crucial
ones have more processor time.

* Local variables¥§ BT 75 N AF, FRARISATIERE, RN AEIGHhv5 i) o

o HER T LB . I EER A R B R R A, I AL IR
WNEAZ, AR Z G .

o JREPD SRS ERAE, AR B .

o BERADERIHE IR A e, Rl 2RI .

o gD RN LA T TR) s

o AT, ST RE LI IR 45

o B Al FH graphsHicharts¥) H 245 & (autoscaling) D) fie .

o FFE PrgraphsMicharts EIIZAN S, AR —14.

o HWait(ms) o £ 5818 AN E P PATAE 5550, X E 2455 7T LLIRAS 5E 2 (1) 4b
PRSI]

Lesson 3 TCP/IP

Transmission Control Protocol (TCP) and the Internet Protocol (IP). TCP and IP are the
basic tools for network communication. TCP is usually the best choice for network
communication between application, because it ensures all data is delivered to its
destination. TCP is the protocol supported by all the different operating systems. The
Address Resolution Protocol (ARP) maps Ethernet to TCP/IP internet addresses and was
incorporated into TCP/IP in 1982. The Internet Protocol (IP) transmits data across the
network. This low-level protocol takes data of a limited size and sends it as a datagram
across the network. IP is rarely used directly by applications because it does not
guarantee that the data will arrive at the other end. Also, when you send several
datagrams, they sometimes arrive out of order or are delivered multiple times, depending
on how the network transfer occurs.

Layer Protocol

Application SMTP (Simple Mail Transfer Protocol)
Presentation FTP (File Transfer Protocol)

Session Telnet

Transport TCP (Transmission Control Protocol)
Network IP (Internet Protocol)

ARP (Address Resolution Protocol)

Datalink (HW) Ethernet

TCP uses IP to transfer data. TCP is connection-oriented. It establishes a session between
the user processes, breaks data into components that [P can manage, encapsulates the
information, transmits the datagrams, and tracks the datagram progress. Lost datagrams
are retransmitted, and data arrives in order and without duplication. For these reasons,
TCP is usually the best choice for network applications. The IP protocol, on which TCP
is based, is responsible for error checking. Hence, both the protocols support error
checking, and a data packet is not delivered unless it passes error checks.

TCPAE I 1, AP S . A PSR R A, Bl t b Ziize it
A e A4 R

To establish a TCP connection, you must specify both the address and the port number.
The address identifies a computer on the network and can be expressed in IP dot notation
or as the hostname. The port is an additional number that identifies a communication
channel on the computer that the server uses to listen for communication requests, which
is between 0 and 65535. Port numbers less than 1024 are reserved for certain applications.
For example, port 80 is reserved for HTTP. Different ports at an address identify different
services at that address, making it easier to manage multiple simultaneous connections.
The port numbers are broadly classified as follows:

0 — 1023 Well-known ports

1024 — 49151 Registered ports, including DSTP (3015). You

should not arbitrarily pick ports from this range.

49152 — 65535 Private or dynamic ports.

NI TCPIEEHE, W Zde s bRl 5 % 15 7E0-65535 2 1], /NT-1024 1) L1 B 45
TN FHAEE . 1024-4915 152 CVFE MRS 11, ANELRE & F X L 11, 49152-655352
FAN B 525505 1 o

The IP address might have the following format:

Class A 0 <7-bit network number> <24-bit host number>
Class B 10 <14-bit network number> <16-bit host number>
Class C 110 <21-bit network number> <8-bit host number>

Class D 1110 <number>

Class E 1111 <number>

Class D is used to support IP multicasting, and Class E is primarily reserved
for experimental use.

DEHI R L HFIPEZ 3K, B RSB R4S % .

Client/Server Model

The client/server model is a common model for networked applications. In this model,
one set of processes (clients) requests services from another set of processes (servers).
Clients:

1. Opens a connection to a server.

2. It sends commands to the server.

3. It receives responses from the server.

4. Repeat 2~3 to process more commands.

4. Finally, it closes the connection and reports any errors that occurred

during the communication process.

Servers:

1. Initializes the server.

2. If the initialization is successful, enters a loop that waits for a connection.

3. Once the connection is made, waits to receive a command.

4. Executes the command and returns the results. It might send back a response indicating
that a command is invalid, but it does not display a dialog when an error occurs.

5. Closes the connection and shut down after having received a command to end.

6. Write a log of transactions and errors to a file or a string.

%CP You use the TCP Open Connection function on the client computer to open a

L= connection to a server using the specified Internet address and port for the server.
If the connection is not established in the specified timeout period, the function completes
and returns an error. connection ID is a network connection refnum that uniquely
identifies the TCP connection. error in and error out clusters describe any error
conditions.
A server needs the ability to wait for an incoming
connection. The procedure is to create a listener and wait for an accepted
TCP connection at a specified port.

:._T@i? First, use the TCP Create Listener function to create a listener on a computer
C ™ toactas a server.

'il_!LTi@fﬁ Then use the Wait on Listener function to listen for and accept new connections.
w_* The advantage of using this method is that you can cancel a listen operation by
calling TCP Close Connection. This is useful when you want to listen for a connection
without using a timeout, but you want to cancel the listen when some other condition
becomes true. For example, when the user clicks a button. When a connection is
established, you can read and write data to the remote application using the functions
explained in the following sections.

= ror |he TCP Read function receives up to the number of bytes specified by bytes to
read from the specified TCP connection ID and returns the results in data out. If
the operation is not complete in the specified timeout period, the function
completes and returns an error. error in and error out clusters describe any error
conditions. The mode input specifies the behavior of the read operation for the following
four different options:
* Standard—If you use the standard mode, the function returns the number of bytes
received so far. If less than the requested number of bytes arrive, it reports a timeout error.
* Buffered—If you use the buffered mode, the function returns the number of bytes
requested or none. If less than the requested number of bytes arrive, it reports a timeout
error.
* CRLF—If you use the CRLF mode, the function returns the bytes read up to and
including the CR (carriage return) and LF (line feed) or nothing. If a CR or LF are not
found, it reports a timeout error. « Immediate—If you use the Immediate mode, the
function waits until any bytes are received. This function waits the full timeout if no
bytes are received.

=.1°" The TCP Write function writes the string data in to the specified TCP

=" connection ID. If the operation is not complete in the specified timeout period,
the function returns an error. bytes written identifies the number of bytes transferred.
error in and error out clusters describe any error conditions.
Notice that all the data written or read is in a string data type. The TCP/IP protocol does
not state the type or format of the data transferred, so a string type is the most flexible
method. You can use the Type Cast and Flatten to String functions to send binary or
complicated data types.
However, you must inform the receiver of this information of the exact type and
representation of the data to reconstruct the original information. Also, when you use the
TCP Read function, you must specify the number of bytes to read. A common method of
handling this is to send a 32-bit integer first to specify the length of the data string that
follows. The TCP example VIs provided with LabVIEW and the exercises in this lesson
provide more information on these topics and on how the data typically is formatted for
TCP/IP communications.

%=~ The TCP Close Connection function closes the connection to the application

& associated with connection ID. abort determines whether LabVIEW closes
the connection normally or aborts the connection. error in and error out
clusters describe any error conditions.
If there is unread data and the connection closes, the unread data might be lost. This
behavior is dependent on your operating system. For example, on the Sun operating
system, unread data is kept even after the remote application closes the connection.
However, Windows NT immediately deletes any unread data when a close connection is
received. Connected parties should use a higher level protocol to determine when to close

the connection. Once a connection is closed, you can not read or write from it again.

Lesson 4 DataSocket

PRV DataSocketi AR 7 H, (HA W HE L REHE, MTCPAPT AAS LK. W5
T FE.

DataSocket is a programming tool that enables you to read, write, and share data between
applications and/or different data sources and targets across a network. You can use
DataSocket to access data in local files and data on HTTP and FTP servers. With general
purpose file I/O functions, TCP/IP functions, and FTP/HTTP requests to transfer data,
you must write separate code for each protocol. With DataSocket, you need very little or
no code to transmit and receive data over the Internet.

DataSocket consists of the following four components:

* DataSocket Server—The DataSocket Server acts much like a Web server and
continuously listens on port 3015 for client requests. After the client request arrives, the
DataSocket Server checks if the client is allowed to access the server. If the client is
allowed access, it processes the read/write request. You must have the DataSocket Server
running for the clients to connect to the server for read/write operations.

* DataSocket Publisher—The DataSocket Publisher writes data to the DataSocket
Server. The publisher sends the data to the DataSocket Server, which publishes that data
to any clients that want to subscribe to that data.

* DataSocket Subscriber—The DataSocket Subscriber reads data the DataSocket
publisher writes to the DataSocket Server.

* Data Item—The data item is the unique name in the DataSocket URL that identifies the
data you want to read or write from. Data items can carry only one type of data or many
types of data bundled together.

Subscribers

i} Publisher =
e / J L
SEEm Ej
URL: [dsipifiocanastiwave |20] _DataSocket 1 e B w & W b
. : o
3 ot iane o

sl Pom e 15 ataSiach i Serves
1o
o J_." -
’_J

(=T —| Chaesl |

Scon Aael SA0I0 | * et JH0 |

l |

Al

S et e
Web Page

DataSocket Transfer Protocol (DSTP)

The URL (Uniform Resource Locator) for DataSocket is similar to the URL you
normally use for Web pages. It identifies the location of the data that you want to write to
or read from. The first part of the URL identifies the computer name or IP address, and
the last part identifies the data item to which you want to read from or write to.

Note You cannot directly enter DataSocket URLs in most Web browsers. The IP address
in the DataSocket URL always corresponds to the computer running the DataSocket
server.

ANBEAE R 2 B0 Yo 28 H 28 N DataSocketHtidit, PN 4T T DataSocket v ML A
AEIE TH o

dstp:/127.0.0 1/ wave
| | 1 | 1 |
T T T
Protocol 1P Address Data ltem Mame

dstp://dsmachine.comfwave
| | |

Protocol Machine Name Data Item Name

You use DataSocket Write VI to publish data to the DataSocket connection.
» URL—Specifies the computer name and the data item to which you

want to publish (write) data.

» Data—This input is polymorphic, so you can connect any data type to it.

#v:l You use the DataSocket Read VI to subscribe to data from the DataSocket
L¥=" connection.

* URL—Specifies the computer name and the data item from which you

want to read.

* type(Variant)—This terminal is polymorphic and determines the data

type that is expected from that data item. You can connect a dummy

variable of the expected data type to the type(Variant), and the output

data terminal changes accordingly.

The DataSocket Server Manager allows you to combine hosts into groups, specify the
group or hosts allowed to subscribe to data items from the DataSocket Server, and
specify the group or hosts allowed to publish data items to the DataSocket Server.

In the DataSocket Server Manager, Server Settings has the following two

setting that you can configure:

* MaxConnection—The maximum number of clients that can connect to the DataSocket
Server at one time. The default value is 50.

* MaxItems—The maximum number of data items that are available in the DataSocket
Server. The default value is 200. In the DataSocket Server Manager, Permission Groups
defines security using the following three built-in groups:

* DefaultReaders—The hosts that can read data items from the DataSocket Server. The
default is everyhost, which means any host can read a data item.

* DefaultWriters—The hosts that can write to a data item on the DataSocket Server. The
default is 1ocalhost, which means that only the host running the DataSocket Server can
write data to a data item. You must change this if you want other clients to publish (write)
data using the server.

» Creators—The hosts allowed to create data items. The default is 1ocalhost, which
means that only the host running the DataSocket Server can create data items. A host can

belong to writer group but can not belong to creators group.

You also can create custom groups by clicking New Group and assigning a name to the
group. After you assign the name to a group, add the hosts to the group by specifying
their name or IP address. When you create groups, you combine hosts that belong to a
certain group. They do not define the actual permission assigned to the group.

A data item is a unique name or place in the DataSocket Server from which you read or
write data. You can create a data item dynamically by the client at runtime if it belongs to
the creators group, or you can create the data items in the DataSocket Server Manager
ahead of time. Data items created ahead of time in the DataSocket Server Manager are
called predefined data items. To create a new data item, click New Item and enter a name
for the data item. You can then specify the group that has access to read from the data
item and the group that has access to write data to the data item. You also can allow
multiple hosts to write data to the data item at a time and specify the initial value. The
DataSocket Server returns the initial value to a reader if no one is writing data to the data
item.

Note Every time you make changes to the Data Socket Server Manager, you must restart
the DataSocket Server for the changes to take effect.

BRI T Data Socket Server ManagerfE XU, W20) & LAAERK

Front Panel DataSocket

Front panel DataSocket allows you to publish and subscribe to data directly from front
panel controls and indicators.

Once you publish the data from a control or indicator, the data is transmitted when the VI
runs. You can write to an existing data item, or a new one is dynamically created if it
does not already exist.

On the publisher side, LabVIEW publishes the data using the front panel DataSocket.
Once you run the VI, an LED indicator on the top right corner of the control indicates the
DataSocket connection status. The green color of connection status indicates successful
connection.

On the subscriber side, all you have to do is subscribe to data from the front panel
indicator and keep the VI running. The indicator displays the data from the data item.

On the publisher side, LabVIEW publishes the data using the front panel DataSocket.
Once you run the VI, an LED indicator on the top right corner of the control indicates the
DataSocket connection status. The green color of connection status indicates successful
connection.

On the subscriber side, all you have to do is subscribe to data from the front panel
indicator and keep the VI running. The indicator displays the data from the data item.

Variant Functions

;E’ Each attribute is set using the Set Variant Attribute function. The attribute is
set as a name value pair. The name of the attribute is unique, and you use it
to retrieve the data from the attribute.

“'—\: To read the attribute you need to specify the name of the attribute and the

expected data type of that attribute. You can specify the data type of the

attribute by wiring the appropriate data type constant to the default value input of Get
Variant Attribute function to determine the type of data expected from that attribute.
Note Attribute names are case sensitive.

This section describes how to send multiple data types bonded together over one
DataSocket connection. The data is bonded together using the Variant functions. OLE
Variant data can be of any type, so you can combine several data types together as one
data type, even ActiveX.

Variant Writing Data with Aftributes Reading Data With Attributes varant
- >
Ky

Attribute (name + data) Attribute (name — data)

Set Variant Attribute| . g

o - |Get Variant Sttibute

[=]

2 N
Attribute (name + data) Attribute (name — data)
Set Variant Attribute] - [Get Variant Attribute

T [=3
o ? \} o

Data are first converted to variant data using the To Variant function and then each
additional piece of data is written as an attribute. Each attribute is added as a name-data
pair using the Set Variant Attribute function. The unique name of each attribute
differentiates a particular attribute and retrieves the attribute data on the reader side.

The primary reason for writing data with attributes is that it ensures that all pieces of
information arrive at the same time on the reader side. It is also more efficient than
sending multiple items on different DataSocket connections where you do not know if
they will arrive at the same time. If different ones are lost, you do not know which ones
are associated with one another. With attributes, the packets can still get lost, but what
gets through is logically bonded.

The secondary reason is that you can dynamically delete an attribute, thereby saving
bandwidth.

DAL]| Wame
channel
; ; Gt Variant Attribute|

2, L e
S e

D ataSocket Read)

stop
e gl mmﬂ

Bi-directional Communication

Bi-directional communication is when two VIs can communicate both ways over the
network. You can use bi-directional communication to control VIs remotely over the

Internet.

Machine 1

Writing Shder Value

Reading LED Status 0

o
i

o
Bovwbovvbvrnbvendag

m

[8

dtsp:iimachinei/data2

dtsp:imachine2/data?

p— 1|

Reading and Writing Data from Other Sources

Machine 2
Wiiting Switch Value Reading Slider Value
* ON 10.00-
OFF i
o 6,00~
o 4,00~
c -3 200-
0.00-
h 1pfd hinez dat. g
I 3 ma: IME, =} T
i SEEm)

IEET¢

You can use the DataSocket Read function to read the following sources:
* Data on HTTP servers (Windows only)

* Data on FTP servers (Windows only)

* Local files (TXT, WAV, tab delimited TXT files)

¢ Data on OPC servers
The files are read as ASCII text.

The DataSocket Read function reads the entire file. You cannot read small
chunks of data from the file at a time or randomly access data in a file.

It only reads the file from start to end.
Nitp: #/ftp. ni. comincoming,test. bat|

]

“Wavetform Graph

Amplitude

TR B R
YR

200

Plat 0

| | Ilunlll llnll I."\II |'I.I'|
"||"|||'||||||||'
IL.' I}

SARY) IIIJ|' \/ |

1
Y

sto B0 ho

Time

17
Y

'ﬁll

II |
I
)

1000

To read the text from the tab delimited file or a text file, you have to override
the default by specifying [text] atthe end of your file path.

Nftp: 2 Aftp.ni. comdincoring.text. b [text]| data
0166 5.049
u_' 0.098 5.059
= 0.029 5.053
-0.033 5.044
-0.038 5.054
-0.166 5.059

Lesson 5
VI Server

VI Server is an object-oriented, platform-independent technology that provides
programmatic access to LabVIEW and LabVIEW applications. It allows you to perform
the following operations:

* Call a VI remotely.

*» Configure LabVIEW on a remote computer to be a server that exports VIs that you can
call from another computer on a network. For example, you might have a remote
computer that acquires data on a local computer. By setting the preferences in LabVIEW,
you make VIs on the remote computer accessible on the network so transferring the data
is as easy as calling a subVI.

* Edit the properties of a VI and LabVIEW. For example, you can determine the position
of'a window or scroll a front panel so that a part of it is visible. You also can save any
changes to disk.

* Change the properties of multiple VIs.

* Load VIs into memory dynamically, rather than having them statically linked into your
application, and call them just like a normal subVI call using VI Server functions. This is
useful if you have a large application and want to save memory or startup time.

* Create a plug-in architecture for your application to add functionality to your
application after it is distributed to customers. For example, you might have a set of data
filtering VlIs, all of which take the same parameters. By designing your application to
dynamically load these filters from a plug-in directory, you can ship your application
with a partial set of these filters and make more filtering options available to users by
simply placing the new filtering VIs in the plug-in directory.

* Retrieve information about an instance of LabVIEW, such as version number and
edition. You also can retrieve environment information, such as the platform on which
LabVIEW is running. For example, you can use this capability if you have an application
that uses ActiveX and there is the possibility a user might try to run it on a non-Windows
platform. Your application could check if the operating system is Windows and if not
generate an error message.

VI Serversg —MHIFIX5, 5FGTRKIEA, $-AT T LabVIEW A b HIFE 190

i

PR . SEVFSE L N 35 -

TR VI

BTN I LabVIEWHEL B 4 IR 55w, IR VITT LLgERI2% 55— G T EHLR T . 1
W5 — G R SEAAEA T L R B . W % B LabVIEW @ 1, A fE vt 5P i
VIAT L[], AL S an (7)) FH SubVI—Ff fij ..

G VIN LabVIEW [FREE o 121, o] LAykesg B A B BR SR TR, IXFEAE A o] W 8
A DU S AR A

AR T VIR o

BVIZISEENNAE, FIFVI Server s B4 B VIRFE T, i ADORER I3 N
J7 b IXFEMFETARN, 5 A7 B RS B TR R A Ak

FNTIEE SR, DB N R R AT H P G T LA nThag. #lan, 1RG —ES5H R
Fnag v As VLB I werh N AR WA H s rh g i X segg ks, v DUERE P s T —i
Sy uEYE A, T LW R A TR B AN H %, RERE IR T 2 R B AL PR
AR LabVIEWSLFIIME B, WIS . 0] DA RIS S, WLabVIEW MET s &,
B, MURIFRE H T ActiveX i 5N H P 230K R 72 1T 7E JEWindows - &, &2 W] LUK
ERE RG0S J2 Windows, WHR AN 3t 7= A48 15044 B

Object-Oriented Terminology

A class defines what an object is able to do, what operations it can perform (methods),
what data it contains, and what properties it has. Object-oriented programming is based
on objects. An object is a instance of a class(type). Objects can have methods and
properties. Methods are equivalent to functions, in that they perform an operation.
Properties are the attributes of an object.

Vi

Server Clients

VI Server has a set of methods and properties that are accessible through
the different clients.

VI Server Clients

VI Server

ActiveX Interface | Diagram Functions TCP/IP

ol ™

ActiveX

Automation Client TCP/IP Client

Diagram Access—LabVIEW has a set of built-in functions located in the
Functions»Application Control palette you can use to access VI Server on
a local or remote computer.

Network Access—If you are using VI Server on a remote computer,
LabVIEW uses the TCP/IP protocol as the means of communication.
ActiveX Interface—ActiveX clients such as Visual Basic, Visual C++,

and Excel applications can use VI Server to run LabVIEW applications.

Application and VI Objects

VI Server is exposed through references to two classes of objects—the Application object
and the VI object. These classes of objects allow you to perform operations using
methods and properties. An application class reference refers to a local or remote
LabVIEW environment. This is the actual LabVIEW application itself, not a program
written using LabVIEW. The properties and methods of the LabVIEW application
object can, for example, change LabVIEW preferences and return system information.

A virtual instrument class reference refers to a specific VI running in the LabVIEW
application. For example, the properties and methods of the VI object can change the
VI’s execution and window options.

VI Serverit i PRl % 7= A H -
o NWHFEFFAT G M AKBGERE LabVIEW 5. IX/E5LFRI LabVIEW N HHFEF AL, 1Mk
H LabVIEW 4’5 MR F. Flan, e AE LM LabVIEW [#)3 IE TURR [Pl R 48

==
H/Gho

o EAUBGER B S NEATAE LabVIEW N TR RIS E 1 VI fla, e R A 75 ¥ T
PARSAE VI [RI8 47 R g T

VI Server Programming

VI path can be a
pathname, or a string Invoke Node calls the
Path Method "Run VI
5 C\My DacumentstF_te i | @] Property Node
opens the front
~ panel of the VI Close the session

Fat
B] |

— g R e I T
o n 2] e B n :IIIL el

=

0 0% i ~pFP.0pen Run Vi ™
H-a_,_ - W/ ait until done
T H—E réiuto Dispose Ref
Eas -V Check for errors

Open Ap;_)llcallon is only e
needed if accessing a syl eiman = e
VI on a remote machine

Emarin na e |
pesziaced [4] ———

Open V| Reference

Fiatuinz 3 ralerenca b a'vl egecified by a rame sk orpath tothe
W' locabon on disk,

Open a session to a VI subject

First, you create a reference to either the Application object or the VI object using the
Open Application Reference or Open VI Reference functions. This ensures that the
correct resources are allocated and that they are reserved.

Then, pass the reference to the Property Node or Invoke Node functions, so that they
know which application or VI they are operating on. Finally, close the reference to
release the object resources.

Cgm When you open a reference to the Application object using the Open Application
0= Reference function, the reference is either to LabVIEW running on the local
computer or to a LabVIEW installation running a remote computer across a network. If
you leave the computer name input unwired or empty, the function creates a reference to
the current application. Otherwise, LabVIEW treats the computer name as a TCP/IP
address and can be in dotted notation, such as 123.23.45.100, or domain name
notation, such as remotemachine.ni.com.

The port number input allows you to specify multiple servers on a single computer.

You use the application reference output as an input to Property Nodes and Invoke
Nodes to get or set properties and invoke methods on the LabVIEW application. You
also use the application reference as the input to the Open VI Reference function to get
references to VIs that are running in the LabVIEW application.

B] The Open VI Reference function returns a reference to a VI specified by a name
0" string or path to the VI location on disk.

You can get references to VIs in another LabVIEW application by wiring an application
reference, obtained from the Open Application Reference function, to this function. If
you leave the application reference input unwired, the Open VI Reference refers to the
local installation of LabVIEW.

E You use Property Nodes to modify properties of the LabVIEW application or VI

Object you define using the Open Application Reference or Open VI Reference
function. Once you wire the VI reference to the Property Node, you can access all the
properties available for that Application or VI reference.

You can resize Property Nodes to have more than one input or output. To select whether
a property reads or write data, right-click the property node and select Change to
Read/Write. If a property is read-only, this menu item is dimmed.

Property Nodes execute from the top to the bottom. If an error occurs midway down the
node, the remaining properties are ignored, and an error is returned.

JEVET RN LR HAT, BRI AR, TR A R JF IR [R

Most Application Class properties are read-only. They allow you to check a whole range
of parameters, such as what VIs are loaded into memory, properties of all the display
monitors, the name of the operating system, the version of operating system, whether the
LabVIEW Web Server is active, and so on. The properties that can be written are for the
printing options. This allows you to customize what is and is not printed. You can use
this information to ensure that the PC running the LabVIEW program is configured
correctly and prompt the user to re-configure the PC if necessary.

Many of the properties of the VI that are exposed correspond to the properties available
in the File» VI Properties dialog box. Most of the properties are read and write.
Properties such as name, path, type, metrics, and so on are read-only. Some properties are
transient, such as window position, title, and so on.

% You use Invoke Nodes to perform methods, or actions, on an application or VI. A
single Invoke Node can execute only one method on an application or VI.

BN R BEIAT— ANk

There are three Application Class methods. They perform the following functions:

* Bring To Front—Brings all the windows of the application to the front.

* Disconnect From Slave—Disconnects the LabVIEW Real Time (RT) development
system from the target RT engine. This only applies to LabVIEW RT development
systems.

» Mass Compile—Allows you to mass compile a set of VIs in a specific directory.

Some of the important VI Object methods exported by the VI Server are Export VI
Strings, Set Lock State, Run VI, Save Instrument,
and so on. The Export VI Strings method exports strings pertaining to VI
and front panel objects to a tagged text file. The Set Lock State method sets
the lock state of a VI. The Run VI method starts VI execution. The Save
Instrument methodsavesa VI.

C

VI reference. If you close a reference to a specified VI and there are no other
references to that VI, LabVIEW can unload the VI from memory.
This function does not prompt you to save changes to the VI. By design, VI Server

actions should avoid causing user interaction. You must use the Save

Instrument method to save the VI programmatically.

Note If you do not close the application or VI reference with this function, the reference
closes automatically when the top-level VI associated with this function finishes
execution. However, it is a good programming practice to conserve the resources
involved in maintaining the connection by closing the reference when you finish using it.

MR TZ VIS KRBT A, & BN 1R EVIING I H . (BF8h 51 H R ORAFE
W R, AR S] . Close Reference N R {RAE VIS, SiifHSave
Instrument kg REvI, FrLAVI Server & kG fH P ag B .

Strictly Typed VI Refnums
Use strictly typed VI refnums to call VIs dynamically, which saves memory if the
application is very large. It also allows a large application to be started more quickly, as

LabVIEW does not need to load all the VIs at the beginning.

You can pass the strictly typed VI refnum to sub VIs, just like any other data type. You
need to make sure that the strictly typed VI refnum control in the subVI is mapped to the
connector pane.

Vi Relrvann A data type that encodes the
connector pane type information,
— Egt not the VI to call.
| (e
Fathtovi] | &~ Connector type and
[=ct o) VI information
—lo T
~—
Falh
% LMy DocumentstF_to Cd | @] Connector pane type | S
and VI to call. i
Open VI Reference Function]
Deg)

Call By Reference
To create a strictly typed refnum, place an Application or VI Refnum control, located
on the Controls»Path&Refnum palette, on the front panel of a new VI. Right-click the
refnum and select Select VI Server Class» Browse from the shortcut menu and select a
VI from the dialog box that appears.

You can also create a strictly typed refnum by dragging and dropping a VI icon onto the
refnum.

Strictly typed refnums is a data type that contains the connector pane information of a VI.
The type specifier displays its connector pane. Note that you are opening a reference to a
VI that has a connector pane of the type you have just chosen. It does not store any link to
the VI you select. LabVIEW provides methods that allow you to modify the values of
controls in a VI and read the values of indicators. Using methods also requires you to
flatten data to strings before it can be passed to the method. As the following block
diagram shows, using this paradigm can cause your block diagram to look very messy
and confusing if you are modifying a lot of controls or indicators.

Fath to Wl
BEH
0 S s W '!5? B IS] E; B i] g o
Set Contrall| Set Contral Yalue Fiun | Get Cantrol Value nnan cd |
[ibck v Control Marme | [E@}- ' ait untl done v Cantrol Mamne I
[Value [Deg F] [Em + Type Descriptar L-{vAuto Dizpose Ref Type Descriptar »
d v Flattened Diata B CH -
Get Control 0.00He
[abe

Using a Call by Reference Node, as show in the following block diagram,
you can write or read data to a VI in a much simpler manner.

Fath to Wl

[O
o | |

T
L [

Deg F Deg C
]]

strictly typed refnum means that the connector terminals of a called VI and the data
type they can accept are fixed. It does not define the name of the VI being called—QOpen
VI Reference does that. When you use Open VI Reference and you supply a VI refnum,
it checks to see if the VI has the same connectors and data types as defined in the VI
refnum. If it does not, an error is generated.

Strictly typed refnum &M VI HYIERSm 7~ H AT #5328 280, IR e SCER AT
Vi {14 F—— & Open VI Reference [T 1. 248 VI 5T IF—A VI'E A VI ER R
HAERALERA VI 5] & L —H

When you call a VI using the Call by Reference Node, no checking or interpretation of
data types is carried out. This is known as strong typing. Using methods, the application
must ensure that any data written to or read from a VI is the correct data type when it is
flattened and unflattened. The advantage of strong typing is speed. Removing the
overhead of interpreting raw binary data into the correct form, (integer, floating point,
string, and so on) reduces the execution time of an application, especially if it is large.

When you open a strictly typed refnum, the referenced VI is reserved for running and
cannot be edited state, it means that the VI has been checked to make sure it is not bad,
that it is not currently running as a top level VI, and that it has been compiled (if
necessary), as well as a few other checks. A VI referenced by a strictly typed VI
reference can be called using the Call By Reference Node at any moment without having
to check all these conditions again. Thus, in this state you cannot edit the VI or do
anything to it that would change the way it would execute.

Remote Communication

LabVIEW allows most VI Server operations in a remote version of LabVIEW across a
TCP/IP network. To open an application reference to a remote version of LabVIEW, you
must specify the computer name input to the Open Application Reference function. Then
LabVIEW attempts to establish a TCP connection with a remote VI Server on that
computer on the specified port.

= App
ool vt T CPACCESS
P SrerlAcoess
P Srer. TCPActive

%] ?_, == App g
0™ A5 TCRACe
SrerlAccess M
Srvr TCPActive M-

P SrvrilAcoess

P S TCPACCess
P Srer TCPACtive
FSrvr. LogE nabled

Server Addiess|

i 8§

D ata from Server

FPlob M ame |

VI Server Configuration for External Applications

To configure VI Server for external applications, select Tools»Options on the server
computer and select VI Server:Configuration. The options specify whether applications
access the VI Server through TCP/IP or ActiveX protocols. For a remote computer,
enable TCP/IP and enter a Port number that client applications can use to connect to the
server. Once you enable TCP/IP, configure which Internet hosts have access to the
server.

When you allow remote applications to access VIs on the VI Server, you should specify
which VIs these applications can access. To configure the exported VIs, select
Tools»Options on the server computer and select VI Server:Exported VIs from the
pull-down menu. You can use the ?, *, and ** characters as wildcard characters. The ?
and * wildcards do not include the path separator. ** includes the path separator.
When you allow remote applications to access the VI Server using the TCP/IP protocol,
you should specify which Internet hosts have access to the server. Configure the TCP/IP
access permissions in the VI Server:TCP/IP Access dialog box from the Tools»Options
menu. The conversion from an IP address to its domain name is called name lookup. A
name lookup or a resolution can fail when the system does not have access to a DNS
(Domain Name System) server or when the address or name is not valid.

Strict Checking determines how the server treats access list entries that cannot be
compared to a client’s IP address because of resolution or lookup problems. When Strict
Checking is enabled, a denying access list entry that encounters a resolution problem is
treated as if it matched the client’s IP address. When Strict Checking is disabled, an
access list entry that encounters a resolution problem is ignored.

To specify an Internet host address, you can specify either its domain address or IP
address. You can also use the * wildcard when specifying Internet host addresses.
Note If the VI Server runs on a system that does not have access to a DNS server, do not
use domain name entries in the TCP/IP access list. Requests to resolve the domain name
or an IP address will fail, slowing down the system. For performance reasons, place
frequently matched entries toward the end of the TCP/IP Access List.

Lesson 6
Calling and Creating
Shared Libraries (DLLSs)

A shared library is a segment of code that contains exported parameters that an
application can access at run time. The library is stored as a binary file. A dynamic link
library (DLL) is a type of shared library specific to Microsoft Windows. On Macintosh
and UNIX, you also can access shared libraries by a C/C++/Visual Basic application just
like you can access a DLL Windows.

A DLL is an executable file that cannot run on its own. The operating system loads the
DLL into memory when the actual application requests it. Then the requesting
application uses the code from the DLL as if it was included in its own binary file
without knowing how or what language in which the DLL was written. The DLL
provides a list of exported functions that developers can call with a simple application
programming interface (API) that provides no hint as to how the functionality is
implemented internally. DLLs consist of a few special functions and a number of
programmer-defined functions to accomplish common tasks,

All shared executables reference the same copy of the library, which need not be included
in executable images stored on disk. As a result, shared executables are smaller than
static executables, and shared libraries reduce memory use.

When a shared library is updated, all programs that use it immediately benefit from the
change, without have to be rebuilt. The disk and memory savings of shared libraries is
offset by a slight performance penalty when a shared executable starts up. References to
shared library routines must be resolved by finding the libraries containing those routines.
However, references need be resolved only once, so any performance penalty is small.

DLL & Mgt Rt kAN] IS AT AIAAT SO o TR vl AT RS 82 1 (APT)
FEANFIEC A FR AT S B ASHIG D01 SR TR G A B A R . BIAT BT B L2) — A
AIA, SEEPAT N TRRESHAT, WA ERDRIN . P R R A R
ST PR P AR B o REBL AT AF (17548 7 2 ARV PEREARHT . B R 558
SRR P, A H A3 — O 1.

Note DLLs can be placed in files with different extensions such as EXE, DRV, or DLL.
In Windows, you can use QuickView to view the exported function names within a 32-bit
DLL. If you have the Visual C++ compiler installed on your computer, you also can use
the Dumpbin utility to view exported function names.

DLL#] LLHEXE,DRVEDLLAEY B4 . FWindowsH 1] DL RIEEF K & F 3217
DLLA (% s %, AT UHVC+H A 77 U Dumpbin K A 5 .

The following code shows the basic structure of a DLL.
BOOL WINAPI DIIMain (HINSTANCE hinstDLL, DWORD fdwReason, LPVOID IpvReserved
{

switch (fdwReason)

{
case DLL_PROCESS ATTACH: /* Init Code here*/

break;

case DLL_THREAD ATTACH: /*Thread-specific code here */

break;

case DLL_THREAD DETACH: /*Thread-specific cleanup code here. */
break;

Case DLL_PROCESS_DETACH: /*Cleanup code here */

break;

}
/* The return value 1s used for successful DLL_PROCESS_ATTACH */

return TRUE;
}

/* One or more functions */
__declspec (dllexport) DWORD Functionl(....){}
__declspec (dllexport) DWORD Function2(....){}

When you compile a VI to DLL in LabVIEW, you need to the following work:

a. Click Add Top-Level VI to define the top-level VI for your

application.

b. Click Add Exported VI to add a VI that will be exported as a

function in the shared library.

c. Click the Define VI Prototype button to define the prototype for the exported VI.

GiEDLLIY, T8 skt BRI TRV, H e mbaev I b P i, I X
T,

i+ Define V1 Prototype E

Function Mame

F to C
I =— — Current Parameter
=) .
0 Stand-ard Calling anventlons Name IDegF
™ C Calling Conventions | _|
Param Type Input -
Parameters
return value E Wl Input. | DegF =]
Pasz By | Value |
>

L)1)

Function Prototype;

floatGd F_to Clflnatéd DeqF. floatGd “DeqC)

Ok I Cancel | Help |

The function float64 F_to C(float64, float64) in the dialog above may be called in VB as
following:

Private Declare Sub DegFtoDegC Lib "C:\Tmp\app\Convert Temp.dll"
Alias "F _to C" (ByVal degF As Double, ByRef degC As Double)

Private Sub Start Click()

Dim DegreeF As Double

Dim DegreeC As Double

DegreelF = FTextBox.Text

Call DegFtoDegC (DegreeF, DegreeC)

CTextBox.Text = DegreeC

End Sub

Private Sub Quit Click()

End

End Sub

gEi: The Call Library function allows you to select the following return types and

—— parameters for your DLL:

* Void—Void is accepted only for the return value, whereas Adapt to Type (included
two similar items: Handles by Value and Pointers to Handles)is accepted only for
parameters(void, void*)

* Numeric data—For numeric data types, you must specify the exact numeric type out
of the following items:

— Signed and unsigned versions of 8-bit, 16-bit, and 32-bit integers.(char, short int,

long)

— 4-byte, single-precision numbers.(floaft)

— 8-byte, double-precision numbers.(double)

You must use the format ring to indicate if you pass the value or a pointer to value.

* Arrays—You can indicate the data type of arrays (using the same items as for

numeric data types), the number of dimensions, and the format to use to pass the array.
Use the Format item to pass an Array Data Pointer or an Array Handle or an Array
Handle Pointer. If you use the Array Data Pointer, pass the array dimension as a
separate parameter(s).

* Strings—You should specify the format for strings. The items can be C string
pointer, Pascal string pointer, String handle or String handle pointer. If the library
function you call is written specifically for LabVIEW, you might want to use the
String Handle format, which is a pointer to a pointer to four bytes for length
information, followed by string data. The Win32 API uses the C string pointer.

(CStr, Pstr, LstrHandle, LstrHandle*)

* Waveforms—you can indicate the data type of Waveform, Digital Waveform,
Digital Table, even the number of dimensions of Waveform.(Hwave)

* ActiveX—There Special pointer for variant: ActiveX Variant Pointer, IDispatch*
Pointer, IUnknown* Pointer (Variant*, IDispatch**, IUnknown**)

By default, the Call Library function runs in the user interface thread or

a single thread. Hence, when you first select the Call Library function,

it appears orange in color. When you mark your DLL as thread safe(reentrant), the Call
Library function changes to a yellow colored icon, indicating that the function in the DLL
is thread safe. A DLL is defined to be thread safe if it can be reliably called from two

or more separate threads. You will not need to type the entire path to the DLL unless the
DLL is stored in a location that does not appear in the PATH variable. All input terminals
to the Call Library function must receive data, especially pointers, or may cause errors in
Windows that might result in a crash or incorrect behavior.

FAAEOL T, Call Library sE0217 6 P AC B AR SR LR, XN s B
2 DLL AE#M A AL RO RI LR nT SE I, w] DS DLL ARic o8 % A FE (A,
XN E AR

Ji4h, WA DLL BA% HILAE Path SAGAC SR, i ANT EM A S it SHUNY
MR A5 A R SRS (EA SR e 4 — 2 A lmr o &4
NS AL RNE, R ARET— € I, & W 3 BUR Ge 5 1 T 2 5t

Note In Win32, you canuse cdecl and stdcall calling conventions. The calling
convention determines the order in which arguments passed to the functions are pushed
onto the stack. It also determines which function, calling or called, removes the
arguments from the stack. The standard (_stdcall) calling convention is used to call
Win32 API functions. Parameters are passed by a function onto the stack from right to
left and are passed by value unless a pointer or reference type is passed. Function
arguments are fixed, and a function prototype is required. The callee is responsible for
popping its own arguments from the stack.

The C calling convention is the default calling convention for C and C++ programs, it
passes arguments in order left to right, and the stack is cleaned up by the caller. The C
calling convention creates a larger executable because it

requires each function call to include stack cleanup code.

£ Win32 1, Wi cdecl Al stdcall A M.

FRUEWFH I stdcal)HKRIA Win32 APl B, sRECK S8 U EUE B AR AR
efRst e g I, WA R . MBS EEEWER, JFERR B, oM
I S DT B

i C I cdec)M c/c++REFFIHIBAE Tk B NARAEIESHCER,
HARHIE 5T B AN R 2R o R s BEARHY, Xt e AT A0
HREECHIIS

Examples: Several WinAPI in User32.dll by stdcall

1. int MessageBoxA (hWnd, lptext, lpCaption, uType)

{8l Call Library Function E
Library Mame or Path [User32.dil Browse. |
Function Name [MessageB axd] [Fun in Ul Thiead |+
Calling Canventions | stdcall [w/INAPT) =l Message Box Button Type |1Tyl}e
Parameter—lretum type E K ;
Type | Numeric _vI Add a Parameter Before
Data T Signed 32:bit In S | OK CANCEL |
ata Tupe | igre it Integer _I aE -
. : ABORT RETRY IGNORE 2
elete this Parameter
YESNO CANCEL]
Function Prototype:
long MessageB oxdunzsigned long kiwind, CStr IpText, CStr pCaption, unsigned long uT ppe]; ‘ YESNO 4
RETRY CANCEL 5
ak. I Cancel Help

2. HWND FindWindowA (lpClassName, lpWindowName)

If 1pClassName is NULL, all class names match. In this case, you must pass a NULL to
this parameter. In LabVIEW, when you pass an empty string to a DLL, you do not pass a
NULL pointer—just a pointer to a 0-byte string. Because a NULL pointer has a numeric
value of zero, the easiest way to pass it is to send an integer value of zero. Hence, you
will pass a 0 as a long integer.

LEC/CH+H 7 RIRFFREINULL, 25 [H] T-0x00. 48 M /ELabVIEWH, — /NS 77 JF:
AREKTIRENULL, 12— MOK BT B A R Er . I DAL 8 S e £ nT
DL B R IEFHOE A 110x00,

AH RN R 22 BRI B String A Integer

| Call Library Function

Library Hame or Path [user32.dll

BErovese... |

Function Name [Findwindous i | [Run in Ul Thread] =]
Calling Conwventionz | stdeall PaRAPT) _vl
FParameter —l hwfnd E
Tupe | Mumeric =1 Add a Parameter Befare |
Crata Type | Unsigned 32-bit Integer _vI

Function Prototype:

Add a Parameter After I

Delete this Parameter |

unzigned long Findw/indowa(long IpszClassM ame, C5tr lps2awfindowtd ame);

[ox 1]

Cancel Help I

3. BOOL FlashWindow (hWnd, bInvert)
|l Call Library Function
Library Mame or Fath |user32.dll Erowmse. |
Function Marme [Flazhiwindow B | [Funin Ul Thread [- |
Calling Corventions | stdcall PAINAPT) = |
Parameter —| blreeert E
Tvpe | Murmeric | Add a Parameter Befare I
Data T =1 d 32-bit [t -
S8 R I e Emege _I Add a Parameter &fter I
Faszs I W alue _vl
D elete thiz Pararneter I
Function Prototype:
long Flashwindow[unzigned long hw/nd, long blnvert); |
Ok I Cancel I Help I

4. int32 SetWindowTextA (uInt32 hWnd, CStr windowName)

Thread-safe DLLs

As long as the VI does not explicitly violate the following conditions, LabVIEW creates
the DLL to be thread-safe:

» The VI does not have global storage data (global variables, files on disk, and so on).

* The VI does not access hardware (registers).

« The VI does not call functions, shared libraries, or drivers that are thread-unsafe.

» The VI does not protect access to global resources with semaphores or mutexes.

* The VI is not called from a non-reentrant VI.

HIEAI B FH 44, LabVIEWS]E HDLLE /& 242t
o VIKAAGTERHH (SRR, WIS

o VIEAG VI (A2

o VIEHHHAN LN KA, L E s IR

o VIAAT IV ECE R AR 4 = s 107) AR

o VIKA#AEEAMVIEA

Array Options with DLLs

Arrays of numeric data can be of any integer type or single-precision (4-byte) or
double-precision (8-byte) floating-point numbers. When you pass an array of data to a
DLL function, you have the option to pass the data as an Array Data Pointer or as a
LabVIEW Array Handle. When you pass an Array Data Pointer, you also can set the
number of dimensions in the array, but you do not include information about the size of
the array dimension(s). DLL functions either assume the data is of a specific size or
expect the size to be passed as a separate input.

The LabVIEW Build utility allows you to choose any one of these methods at build time.
When an application calls the same DLL, you must know which option was selected so
that the call and the DLL are compatible.

W F Array Data Pointer KALIEEAAL, Hn] DL E R 4L, AWFERLERI RN,
DLL PR B A et 8 Bl R/, B Tk B i A i AL bk o XA 7%

LabVIEWH L VF o U F IS0 200 038 H YW A 77 9 A e A FH R A 1 HH iDL i
o

LabVIEW String Handle

String Data
1

|\D-’J|\D{I|\DG|'\-’J4 = ‘e |3(| t|
|

String :_engih
LabVIEW stores a string in a special format in which the first four bytes of the array of
characters form a signed 32-bit integer that stores how many characters appear in the
string. Thus, a string with n characters will require n + 4 bytes to store in memory. The
advantage of this type of string storage is that NULL characters are allowed in the string.
Strings are virtually unlimited in length, up to 2°' characters.

LabVIEW H] 745 B AR [IR ECAOR ORAF 74 £, IXHE (R Aot Se VR 28 ERNULLAY
fE. B RAFR KL, R4 TR, RRAA2AN /. KEn T
At 4 7 1 A8]

Pascal String Format
String ILength

N 04 t|e‘x‘t‘
L |

T
String Data

The Pascal string format is nearly identical to the LabVIEW string format, but instead of
storing the length of the string as a signed 32-bit integer, it is stored as an unsigned 8-bit
integer. This limits the length of a Pascal style string to 255 characters. A Pascal string
that is n characters long will require n + 1 bytes of memory to store.

Pascal 74 11 I T LabVIEW 7 4F sf AU . (HEH— 7 TRIRAF A I, PR
FE255F4F o K A P A 5 Hne 1777)

C String Format
NULL Character

—

t e x t oo

T
String Data

The similarities between the C-style string and normal numeric arrays in C Becomes
much clearer when you notice that C strings are declared as char *. C strings do not
contain any information that directly gives the length of the string, as do the LabVIEW
and Pascal strings. Instead, C strings use a special character, called the NULL character,
to indicate the end of the string, as shown in the following figure. NULL is defined to
have a value of zero in the ASCII character set. Note that this is the number zero and not
the character 0.Thus, in C, a string containing » characters requires n + 1 bytes of
memory to store. The advantage of C-style strings is that they are limited in size only by
available memory. However, if you are acquiring data from an instrument that returns
numeric data as a binary string, as is common with serial or GPIB instruments, values of
zero in the string are possible. For binary data where NULLSs might be present, you
probably should use an array of unsigned 8-bit integers. If you treat the string as a C-style
string, your program will assume incorrectly that the end of the string has been reached,
when in fact your instrument is returning a numeric value of zero.

CHIF RGP A Char £ X 5EA L. EAES R KRR, 1M2&HNULL
PR B IS R o NULL# E XA BUEO0(0x00), AN F45°07(0x30). CF4F H 1K)
UFAb K S BRI A7 (2, UM (AN GPIBA AR) KA AR i, 3R [m] i)
T R T R AL HUEO . IR RO AT A . W R E RO R, R I
HOR, FEPAHt A RIE T . KE nT7 I 5 Hnt 1775280,

Lesson 7
ActiveX Automation

OLE

The term OLE pertains to the technologies associated with linking and embedding,
including OLE containers, OLE servers, OLE items, in-place activation (or visual
editing), trackers, drag and drop, and menu merging. With OLE, you can create and edit
compound documents that contain data of different formats, created by multiple
applications. OLE objects consist of data and a set of methods for manipulating that data.
OLE objects maintain the data and provide an interface through which other objects can
communicate. The following are some OLE technologies:

* Linking and Embedding—Placing an object or a link to that object inside another object.
For example, embedding is placing a spreadsheet inside a Word document. Linking is

saving a link to the spreadsheet file in the document.

* In-Place Activation(or visual editing)}—Allowing a user to modify an embedded object
using the native application. For example, if a table from a spreadsheet is embedded in
your document, you could edit the tables with the container application document.

» Automation—Manipulating an object or application within another application or object.
For example, programming MS Word from another application such as LabVIEW or a C
program.

* Compound Files—How objects are stored. This technology is useful in implementing a
structured storage technology for creating disk files and improving performance.

* Uniform Data Transfer—Data transfer mechanism for objects. For example, an
application can handle clipboard transfers that deal with disk-based storage mediums.

* Drag and Drop—Enabling objects in a container application to respond to mouse clicks.
* Monikers—Internal objects containing information about the path to a linked object.

* An application that contains these compound documents is called a container
application. A container application can also contain OLE custom controls or OCX,
which are now called ActiveX controls.

OLE /& —Fl 5 R AFVBERAAT IR . OLEXT % s Bl AR VR X Se Bl 10 7 vE 4k, Rt T 5

HoAb RSB R . DU —SOLER A

o BEEERURAN—AENT S WIBCE — A0S BBz . 25BR UL, RN LER K Word SCAY Hh sCE:
— AR B TR TR IR R R SR

o IUHBES (TR G D — SRV P AU B O S . BRI SCRS R RN T L RS
PRT LA 225 N FHRE P SCRRIE e

o HENERAE—HX G R R LA R s . B, 7ELabVIEWEKCH 4w 4EMS Word.

HE S A At o AE SEELE R B SO RN B3 BE 1 45 R At F AR IR A

G — B A — B AL . B0, B al LAER BT UG AR 56 75 2 SR AL PR B AT o

i J— A 2 e I R v R0 5 R Xt R s o A S e v

o S B S R AR A R BT B

o B EOLESE MM ActiveXFE1 (it 2: M OCX)) 2w W H 27

ActiveX

ActiveX is a diverse set of technologies based on COM (Component Object Model). The
COM standard allows developers to create code and applications from a multitude of
different languages and build a defined interface to that code, making it easily accessible
by other applications. Applications can access the functionality of other applications
through the standard interface. The following are common ActiveX technologies:

* ActiveX Controls—Interactive objects that can be used in containers such as a Web
site.

» ActiveX Documents—Enables users to view documents, such as Microsoft Word or
Excel files, in an ActiveX container.

* Automation—Enables communication of data and commands between different
applications.

* Active Scripting controls—The integrated behavior of a lot of ActiveX controls and/or
Java programs from a browser or server.

ActiveX SR I E AL 2 B BEOR, — Rk FCOMAUT X SR I 2 FETERR
COMPRME FEVFIT A HIAS [R5 G AR AN N PR P 0 5 SRR 11, T FAd R Py 7T LU)

(7 A) o I FH R 3 e 3 b 42 11 m DA) HLAAR P (P s 2. DLR 22— S ActiveXH K :
o ActiveX¥E{F—H T &4 CMu) MR EX %,

o ActiveX U RS—1F FH 7 e AE Active B 78 H & B MS Wordi Excel 3014 .

o HBNHEAE—SEIIAN RN FH R 1] () £ s A 2 18 T

o ActiveXIAYE HI—T 2 ActiveXFE 1 S X W25 H I Javale P IR 25547 M

ActiveX Automation

ActiveX automation defines the communication protocol between two applications. One
application acts as the server and the other as a client. An automation server exposes
methods or actions that can be controlled by a client application. An automation client
creates and controls objects exposed by a server application. An ActiveX automation
object is an instance of a class that exposes properties, methods, and events to ActiveX
clients.

To create and access objects, automation clients need information about a server’s objects,
properties, and methods. Often, properties have data types, and methods return values and
accept parameters. A list of exposed objects is provided in the type library of the
application. A type library contains specifications for all objects, methods, or properties
exposed by an automation server. Also, the documentation of the server application
contains information about exposed objects, properties, and methods. The type library file
usually has a TLB filename extension.

ActiveX H B84 E LT PRI . — MRS 8 50— MENE o Iedsasdeftn]
e BN ESAT Jy s T AL A R SS B R LT R o ActiveX H B GUE it
JEYE, JrEAFAEISRI S I, R BESR Y, TRIRIPHE A2 2L

NI RS G, HEhERAE T E R PEAUVANAR S, XA th SRR (* TLB) sk 55 #3243

LabVIEW Automation Programming Model

Craate an Object
LabVIEW.Application

¥
v !

Gelt/Set Properties Execute Mathods
of Application Object of Application Objoct

v y
v

Execute Method
GetVIReferance of
Application Object

T
' }

Geat'Sat Properties Execute Methods
of Virtual Instrument Class of Virtual Instrument Class
Y L]

'

Closa Referances to
Application Object

T & — M 1. 7ELabVIEWH, £ Tools»Options»Server Configuration L 1FActiveX T3 .
7ETools»Options» VI Server:Exported VIs [, 14 Frequency Response VI i B FR . i {&
LabVIEW I B4 HE) %5 5. %3MS Excel, SRJ54T7F
labview7.0\examples\comm\fregresp.xls

WMREWEER], AE TRy ZrZEMWH I E 220 P HITT . &F I LoadData() %
Sub LoadData ()

' LoadData Macro

' Keyboard Shortcut: Ctrl+L

' This example demonstrates LabVIEW’s Active-X server capabilities.

' Executing this macro loads an example VI "FrequencyResponse.vi",
‘'runs it and plots the result on an Excel Chart.

Dim lvapp As LabVIEW.Application

Dim vi As LabVIEW.VirtualInstrument

Dim paramNames (4), paramVals (4)

Set lvapp = CreateObject ("LabVIEW.Application")

viPath = lvapp.ApplicationDirectory + "\examples\apps\fregresp.llb\
Frequency Response.vi"

Set vi = lvapp.GetVIReference (viPath) ‘Load the vi into memory
vi.FPWinOpen = True ‘Open front panel

' The Frequency Response vi has

‘"4 inputs - Amplitude, Number of Steps, Low Frequency & High Frequency
‘' 1 output - Response Graph.

‘" To run the Frequency Response VI, invoke the Run method with names of
' inputs and outputs passed along with their values.

paramNames (0) = "Amplitude"
paramNames (1) = "Number of Steps"
paramNames (2) = "Low Frequency"
paramNames (3) = "High Frequency"

paramNames (4) = "Response Graph"
‘initialize input values to the vi

) ’

paramVals (3) = Sheetl.Cells(7, 5) ‘High Frequency value from cell (7, 5)
‘' paramVals (4) contains the value of Response Graph after running the vi.
‘'run the vi

Call vi.Call (paramNames, paramVals)

' paramVal (4) contains value for Response Graph - a cluster of 2 arrays
‘' ' In Active-X, a cluster is viewed as an array of variants,

‘' so a cluster of 2 elements x & y is an array of 2 variant elements

= paramVals (4) (0) ‘' x co-ordinates

= paramVals (4) (1) ' y co-ordinates

Fill the excel columns 1 & 2 with the graph co-ordinates

' These columns are used by Excel to plot the chart

first = LBound(x, 1)

last = UBound(x, 1)

Sheetl.Columns (l) .Clear

Sheetl.Columns (2) .Clear

paramVals (0) = Sheetl.Cells (4, 5) ‘Amplitude value from cell (4, 5)

paramVals (1) = Sheetl.Cells(5, 5) ‘# steps value from cell (5, 5)

paramVals (2) = Sheetl.Cells (6, 5) ‘Low Frequency value from cell (6, 5)
(

X

For i = first To last

Sheetl.Cells (i - first + 1, 1) = x(i)
Sheetl.Cells (i - first + 1, 2) = y (i)
Next I

End Sub

12925857 T LabVIEW . Application?S, #]JF\labview7.0\examples\apps\fregresp.llb\
FrequencyResponse.vi, IE1TVI, IR [AIFIEA L HIAEExcel B

A —AF] T

Sub Acquire Data()

' This macro changes the Front Panel title of the VI

' It also saves the VI in HTML format.

' 10 Points are acquired from the Temperature sensor.
Dim lvapp As LabVIEW.Application

Dim vi As LabVIEW.VirtualInstrument

Dim ParamVals (4)

Set lvapp = CreateObject ("LabVIEW.Application")

viPath = lvapp.ApplicationDirectory + "anlogin.llb\Acquire 1 Point from 1 Channel.vi"
Set vi = lvapp.GetVIReference (viPath) 'Load the vi into memory
vi.FPWinOpen = True 'Open front panel

vi.FPWinTitle = "Acquire A Point"

Call vi.PrintVIToHTML ("c:\Exercises\LV Advanced\
Acquire.htm",0,0,eJPEG, 256, "C:\Exercises\LV Advanced")
Call vi.SetControlValue ("device", "1")

Call vi.SetControlValue ("channel™, "0")

For i = 1 To 10

Call vi.Run

Sheetl.Cells (i) = vi.GetControlValue ("sample")

Next i

End Sub

Sub Clear Chart()
' Clear Chart Macro
' Keyboard Shortcut: Ctrl+M

Sheetl.Rows(1).Clear

End Sub

EZZE%EEZj’Lab\qE\VdApphcaﬁonéé, TT}?anlogin.llb\Acquire 1 Point from 1 Channel.vi,
1BATVL EE ARG IE, SCRRAARE, il VIE REHTMLIC M, fEREL0 L HI7EExcel B .

LabVIEWHfI i F %} 52 25—Application class and Virtual Instrument class.

Lesson 8
LabVIEW ActiveX Automation Client
and ActiveX Container

LabVIEW CLIENT

Possible Actions:
Creates Object Instance
Gets an Existing Object
Gets or Sets Properties

Invokes Methods 4—‘

Dispatches Action 4) Maps Names
Gets Properties to Interface
Sets Properties | L ¢ ST
ACTIVEX AUTOMATION z
Describes Programmable
SERVER ;
Obijects
Defines and Exposes (May be Part of DLL
Automation Objects or Stand Alone)

I? The Open Automation Refnum function opens an automation refnum that refers
o to a specific ActiveX Automation object. You can select the class of the object by
right-clicking the function and selecting Select ActiveX class. You should select only
creatable classes as inputs to this function. This list of creatable objects is generated by
accessing the Windows Registry. After you create a refnum, you can pass it to other
ActiveX functions.

e
C

The Close Automation Refnum function closes an automation refnum. Make
sure that you close every automation refnum when you no longer need it.

@_;}.;;

&+ automation ' The Invoke Node function invokes a method or an action on an

Method + ActiveX automation object. To select an ActiveX class object,
right-click the Invoke Node and select Select Class»ActiveX or wire an automation
refnum to the input. To select a method related to the object, right-click the bottom of the
Invoke Node and select Methods. After you select a method, the appropriate parameters
appear automatically below it. Parameters with white backgrounds are required, and the
parameters with gray background, are optional.

» = Automation ;. The Property Node function sets or gets ActiveX object property

Praperty ' information. To select an ActiveX class object, right-click the Property
Node and select Select Class »ActiveX from the shortcut menu. Then, select a property
related to that object by right-clicking the bottom of the node and selecting Properties
from the shortcut menu. To set property information, right-click the Property Node and
select Change to Write from the shortcut menu. To get property information, select
Change to Read. Some properties are read-only or write-only. In these cases Change to
Write or Change to Read, respectively, is dimmed in the shortcut menu. To add items to
a Property Node, right-click the node and select Add Element from the shortcut menu, or
click and drag to expand the node.

Some applications provide ActiveX data in the form of a self-describing data type called

an ActiveX or OLE Variant. To view the data or process it in LabVIEW, you must
convert it to the corresponding LabVIEW data type using Variant to Data function.
Note If you are writing a property or indicator of ActiveX variant type wiring the
LabVIEW data type ,which can be automatically converted to variant data types. This
conversion is indicated by a coercion dot.

1546 1 727 PLActiveXE{OLE Variant[F)Jis A 77 U ActiveX g . RO
Variant to Datapf 2055 45 LabVIEW A R A GEEF . W R &K LabVIEW A4 25
5 N\ VariantZ 38 R 1R 7 g 8@ P17 5, LabVIEW 2 H 8l | 4 4t

Excel _wWorkshaet

19 False Vt 9 Ewcel _Worksheet
Froperty Node
i+ wiorksheet b = Range B =& error gut
Fange) pp Value

I Cell

""" Whlue Eutomatio
error in [ho emar § [abeck Cloze

||E o Col To Range Format.wi

VT RIMS Excel, 5 E L FITH I HUE .

el Application
[
Aukomation Open

-+

3
= oy B =2 _pipplication B —] B [y workbooks E_,;l?, = _Workbook ?_,] E, == _Chart ? —] 3 =% ChartTitle E_’;lE =% Fank EL,,]
|

| -

b Visible J Open H [activechart W P HasTie b Teat Jl' Ttalic
¥ Workbooks — » ' Filename i | ChartTitle ¥ Fant [l
I v UpdateLinks
[abeH v Readonly TH ¥

omplete Pathnams D Farmat
to sine.xls ' Password
' ‘WriteResPassword
IgnoreR eadOnlyReconmmended
v Origin
Delimiter
Editable
Motify
' Converter
AddTolMru

EPViHIMS Excel, BB i € SO EER IO FR L

You can find the Microsoft Excel object hierarchy in the Microsoft Visual Basic
reference in the Help menu. Excel objects are arranged hierarchically with an object
named Application at the top of the hierarchy. All other objects fall under Application.
To call the properties and methods of an object in Excel, you must reference all objects
that lie on the hierarchical path to that object. For example, to access the Chart object,
you must first access the Application object, the Workbook object, and then the Chart
object.

Excel Xt R 4% 2N 2. 1500 =& Application®f %, HA XI5 A4E Fif o B R F RN X 506 Jg A
TG X % BT 5 % . e, B ChartXl %, 205515 17 Application X 4,
WorkbookX{ %, #/J5 4 ECharth%,

Remote Automation

DCOM (Distributed Component Object Model) is a Microsoft technology that allows
software applications to communicate directly with each other across networks,
supported only on the Windows operating systems. DCOM allows you to communicate
over the network using ActiveX remote automation to build distributed applications.
LabVIEW supports remote automation by using DCOM. Thus, ActiveX clients can use
DCOM to communicate with LabVIEW running on a remote computer.

DCOM is a complex technology, and it can be confusing while you are trying to use it to
configure an application. There are several security issues that must be considered. There
are two limitations of DCOM and LabVIEW. You cannot communicate between two
copies of LabVIEW on different computers. The client LabVIEW will intercept all calls
to the server. Also, you cannot perform remote activation if the server is on a Windows
98 computer. LabVIEW must be launched manually on the server computer.

DCOM(73 A1 A G AR) S R Windows i 11 REE, 2Bl SR VFRITRE 7RI Active Xz 2
F SR 2 S AT N AR, BLRGE I 4% HAIE LS o ActiveX %/ Al A IDCOM 5@ & 5.
HLEAILabVIEWIE i, DCOMIER R SHA, R & & i BN R P2 AR AL, A1)L
A VE R LG RS . R, A ANF TS L LabVIEWEIA AN BETE IR W IR 5543 A
Win98 %48 b, AfEdtArmieinsh, ATahE sl ik 554 .

ActiveX Containers

* Create Document—Select a document registered with your system. Documents are
objects that you can either link to or embed in a container.

When you link to a document with a container by selecting Link To File option, you
establish a view to that document. Any changes to that document are reflected in the
container application, which updated when the front panel object is updated.

When you embed a document with Link To File option unselected, the document now
becomes a part of the container application. If you make any changes to the document
outside of the container application, the container will not see these changes. An example
of an ActiveX document is a Microsoft Word document embedded in a PowerPoint
application.

* Create Object from File—Select a document from a file located anywhere on your file
system. This object can either be linked to the file or can be statically copied into the
panel.

* Create Control—Select a control registered on your system. An example of an
ActiveX control could be the Microsoft Web browser. All controls have an automation
interface that allows you to work with them programmatically.

o N SRS —IE B MHE VL I SORS S i Rk B R S0y, Bk £ELink to FileiL i,
PRI T — N SCARS IR o SCRYPRAT AT A8 2 S BB 28 v, SORY £ I 55 Ay T AR G 52 16 o
TS WSk AR SR, BIAIESELink to FilelE T, SCRYCH B —H87 . (AR
MR AN S S 2 s N SCRY o EE Tk APowerPoint[fJMS Word SCAY

o MR G — IR B S R ORI 5. TR AR R A .

o ENLEF R MAE I ENL_ LIRS, A AR SRV R R B SRR 1. B,
T E F Active X #1045 G 1K 1«

SHD oc v [webBrowser?]
[=Tk

E w [WebBrowser? 5

;5 == [webBrowser? S

Mavigate Type ¥
NC:ME wercizestLY AdvancedyM| Cust Ed.htmf-» IRL
IF you hawve access bo the internet ' Flags
lvou can enter the AL for a 'live’ v TargetFrameh ame
web page v PostData
’ Headers
N, R EEHIZAS ActiveX R K51 T
%’n;g:!‘i::[l)::ll:_nda' to E::?SZ?::led Display Date in String
on Calendar
Lo WP ICalondar o] s = ICalondar &
[Today | horth Y
Day [

Load MPEG file into Movie Control,
turn off Auto Rewind.

MediaPlayer IMediaPlaperd)

E’—L

B =% |MediaPlayer2 B E--% IMediaPlayer2 B

d FileM amne |

Stop

ShowdodinControls
ShowControlz
ShowDisplay
AutoRewind

“ear

Run the Movie.

When Button is Pressed,

Bk IMediaPlaper? BL@ 8
‘

Active Movie

Quit

April 2001 [apit =] [2001 =]
Sun | Mon | Tue | Wed | Thu Fri Sat

25 26 27 28 29 30)l
1 2 3 4 bl 5] 7
& 9 10 11 12 13 14
ik 16 17 18] 20 iyl

23 24 25 26 27 28
29 30 1 2 3 4]

Play

MediaFlayer, IMediaPlayer2

Which
Player?

Lesson 9
Error Trapping Techniques

With complex applications, proper operation of the system depends on a lot more than
the program itself. Proper operation is a result of many factors, such as the following:
* Good program design based on sound principles.

* Reliable hardware interfaces and drivers.

» Appropriate configuration of hardware, network, and operating system variables.

* Robust design to account for uncertainties.

RN RS, 15U REEEA LKA L, MR 2RENSER,
te .

ST AE A H) _E U R R U

A EE RREAF 4 1B SRR

g, LS RERAE R G AR B 0 M I .

RefE AN T DR 2R Aot e e vt

Debugging—Requirements

Good applications are ones that not only perform well but are also easy to deploy and
maintain. What makes them so is the fact that their form and function are simple and
well-defined. For example, including a Stop button in an application with a For Loop
provides the user with an easy abort option if the loop is taking too long to execute. This
is an ease of use feature for the end user.

The following are some common questions to consider about the

requirements of your application:

* Does your application have a well-defined user interface?

» What hardware and system resources does the application use?

* Can the application exclude others from using resources?

* Are all the components accepting and processing information?

* Do you have limits on memory use?

* Do you have limits on execution time?

* Do you have other domain-specific restrictions?

I RORE P AL RE R Mo HL 5 T HC B A AES, X8 3 o B] Sy R 2
Bl

18N A L L i) L

o RIIREPAT RAFIO R S Be v 2

o PREGRE T WIRLCRE (R 2R Ge B YA

o REFFRETHEE AR T B ?

o S PTAT AL SA AL BE Y R ?

o ATEATIRBINAAAE ?

o ATEATIRBIAT IV T] 2

o ATHAFE R IR I PR 2

Debugging—Behavior

You need to identify what part of the program is operating and what parts apparently do
not. Subtle factors might cause a component to behave erroneously, even though the
actual error might be in a different hidden component. The best way to find such hidden
errors is to evaluate the system behavior with an open mind and record all aspects of the
behavior.

The following are some common questions to consider when debugging the behavior of
your application:

» What inputs, outputs, or other entities does the application have?

 Are you able to interact with them?

* What other applications or entities does your application call?

— Hardware

— Networks

— Third-party programs or DLLs

* How do other applications run?

R R S R PR ER 0 IEAESRAT, WIREE 050 o AN LA 3% nT RESE 4L i)32

¥, RIAESERR R DR] BEAE AN R I BSRALPEh o 3k H BRmRas v (1 e i A2

TR Sk A S ARE A5 T I VA VAl R GEis e i D o

B8R B L L i) L

o FEFPATUIRLE Fay N\ Y O S AR ?

o IRIEEFPIA T e PR P el ik ? fdliff, 4%, 55 =J7FEfPo{DLLs?
Herrismm?

Debugging—State

In addition to the basic behavior of the system in terms of whether all
components seem to be working, you should check the state of the system
to verify program correctness.

The following are some common questions to consider when debugging the
state of your application:

* Do all variables have appropriate values?

* Are there hidden variables, and do they have correct values?

* [s the application executing the appropriate code segments?

* Does the system have the correct IP address, device or channel number,
and so on?

B AR R ST AR R AR TR R R IEASE NG DL, RN & R 5
RS A I8 R P) IR

R8N B L L i) L

o AT R ARIIAT IE 2 A ?

o A REAR? BT IR ?

o FEFFIEAESRATIE 2 (A QRS B ?

o RGMIPHbNE, BE%BUHIE 5555 IR ?

Debugging—Resolution
Errors that are hard to catch manifest themselves in similar circumstances,

such as the following:

* When a certain combination of components execute.

* When a certain resource is in a particular state.

* As an incorrect sequence of events over time, although each single event
might be within the bounds of normal operation of the application.

* As side effects of fixes for other, oftentimes simple, errors.

The following are some effective strategies to take when resolving bugs
in your application:

* Look for discrepancies between requirements and actual behavior or
state of the application.

* Look for evolution of the behavior and the state over time—does this
satisfy the requirements?

» Make intelligent guesses and learn from mistakes.

mu%&%%%%&mfﬁM%%ﬁT,wT:
AR A A AT
'%%A%ﬁ&?%%%%uo
o BHMTRIERS, SRR, AR PSR R R BRAERVEE A
o gl ﬁﬁﬁ%a%%%ﬁ%Jﬁmo

HUE LB A R SRS -

o HHRFSRANSEpRIE FE SR T8) 22 57

o BOMTRIER, FHRSBRIE e BRI AR — I AL SR 2
(GRS TE IR RSN SP L S P

Memory Leak

Memory leaks are primarily an issue in C/C++ and lower level languages, while Java has
built-in garbage collection which is the process of automatically finding such memory
blocks and recycling them. Typically, memory leaks can be an issue in applications with
infinite loops (such as user interface loops), small memory (such as embedded
computing), critical performance requirements (such as real time), and so on. System
resource leaks can lead to hangs and crashes due to non-availability of resources to
certain applications and can be dangerous in factory floor type operations.

LabVIEW has been tested and is free of leaks. However, a LabVIEW VI can still display
behaviors that act as leaks. In cases where a lower level application is being used
alongside LabVIEW, that application could also be prone to leaks.

WA R 32 R C/CH AR E S 1) 3, 11 Java N @t S SR ThAg, st A 3h 34l N 77
e, dAdfg, Wﬁﬁ%%%ﬂ%ﬁ%@ﬁ%MﬁFﬁmﬁ%y¢Wﬁ@ﬂAﬁﬁﬁ»?%%
PEREZLR (s, SN HFRPI R . T ICRCR IR S 301 2409 R 85 T e S BUCU AL
W, XL %%EﬁlmlmNmW%LTWﬁKéﬁﬁo@%,%ﬁﬁﬁ?%%mwmwﬁ,
VI] e LI ER (14T

HA T

4
Airay Constant] tedian Filker. vi
=1 = -
B AR AR N A7
1]
_
iy fH T e, I B FERE
HEAR]
P ath
~] [=
ey
TH Eaf'
zhop
|
)

X UORAE AIAL BE— P73 B
SR MR INE .

Iyl

|
-]

Multithreading Errors
Deadlock occurs when two or more processes are unable to complete because they are

competing for the same system resource(s). An example of deadlock can be two
applications that need to print a file. The first application, running on thread 1, acquires
the file and locks it from other applications. The second application, in thread 2, does the

same with the printer. In a non-preemptive environment, where the operating system does
not intervene and free a resource, both applications wait for the other to release a resource
while neither one releases the resource they already hold.

FEARFRSE I R, BAERGAT IR, 2 MR FF R — RS0, WRAARL
Wi FEEH .

Priority inversion occurs when lower priority threads seem to be getting more CPU time
than higher priority threads. This typically happens because the higher priority thread
might be trying to acquire a resource held by a lower priority thread that has been block
from executing by another thread.

IR AL L im RS REAS 2 BE 2 CPUR], BRI SR — NS SR B ZE 1 R A7 BRI
PAEALERE, X BRI i UL SR T s 2 1), R AR AL

Thread starvation occurs when a thread does not seem to be getting any CPU time for
an indefinite amount of time. For example, a lower priority thread, such as the user
interface thread, might become unresponsive due to time critical threads consuming all
the CPU time.

AR REAE AN E 1IN 8] WA AN BIE AT CPUIRN TRt 2 A AR 2R R LR 900, iy I)™ 6 FR) 25
FEIFE T A IICPUI], AR AR S AR (T 7 i Ze R Bt 23 TC A o

Thread problems typically occur in mutithreaded systems with multiple priority levels
and mutual exclusions(semaphores in LabVIEW). Semaphores need not be in the
application—resources such as ports and hardware can also behave in the same manner.
For example, serial ports acquired by other applications or DLLs might block other
applications.

In most general purpose programming languages, a simple deterministic scheduling
algorithm is used to accommodate a large variety of user tasks. So it is up to the user to
allocate priorities and threads. In LabVIEW, priority scheduling and allocation of
multiple threads is done by the run-time engine. The run-time engine looks at the state of
the application to determine which threads are ready to run, which resources are available,
and when the processor is available. Based on these, it specifies to each task in each
thread when it will get to run.

ML H 2 KRR G A R AR (WILabVIEW H 1) Semaphores) A K i R E A 4% B Y5 il 2
RAZRRE. o, FERFEDLLIAG# 1, s I e T .

ZHRPE S, FERAE NN e RO TR R AR5 . BreLE B i s
BURIZRE . fELabVIEW HHARSER 2 HEMIZ AR 23 L Hirun-time engineZ8 /i, & P& M IR IRE K
JUEMPASRREHE S LFia AT, RSB ATH, A PSR T . T, EAREREAMESS 2R
BT gret .

Using Configuration Files

While not an error trapping technique by itself, using configuration files can be a very
useful feature when building large applications that need to be customized when
deploying on multiple target computers.

The following are some cases where a configuration file can be useful:

* In programs that depend on a large number of support files distributed

in multiple folders. Configuration files ensure that the support files are
accessed from the correct location. It is easier to ensure the accuracy of

one configuration file, rather than searching multiple directories.

* When you need to specify well-defined, tested values for controls so that
the program always starts from the same state and behaves

deterministically.

* In cases where a lot of data is required from the user, it might be easier

to provide one centralized location where the data can be entered. This
reduces the number of user dialog boxes and times files are read within

the program. However, there might be cases where the reverse method

of letting the user pick from menus is preferable.

* User names and passwords, and certain parameters that you might want to hide from the
user, or that the user might not be aware of are best set in a configuration file.

MR EEIC EAT 2 DTSN, R R B R N IR P I, R 8 B AT Al R

RIBAR, AR E SRR BTk, T AIE DURC E SCFARAT -

o FERPHHUR B AR AN SOAE I b [SCRFSCIE o 0B SO ERA DR SCRF SO A IEA
REERTI o YES G B SCHF I IER T 2 AR 2 A SO e P R B R)

o R EON R B IR B, XRERE R BE AR ARSI R, AT
T € 1) e o

o UM ARSRBOCR BN, ARA SR U AR A R X
P/ T PR U AR) B AT SR OO (IR ARifT, SRR R ik S LI
B AR A 2 AT o

o HIP A Lo, AN SEARRT R BN B A B AN SO S BTN
HICAF

— &5

LabVIEW™ &2t AR TRIREFM OB 2004.12. (B—HR)
mebusw@163.com

