PCF1171C: 4 位 LCD 汽车时钟驱动器

特性

- 驱动标准的 3 1/2 或 4 位 LCD 显示;
- 内部电压调整器,可驱动 5V 的 LCD 工作;
- 可选择使用外部固定电源;
- 4.19MHz 振荡器;
- 集成了振荡器的输出电容和极性电阻;
- 工作环境温度: -40~+85℃;
- 40 脚塑料 SMD,正面向下 (VSO40);

概述

PCF1171C 是一个单片封装的、工作频率为 4.19MHz 的 CMOS 工艺汽车时钟电路, 用来指示小时和分钟。它可直接驱动一个 3 1/2 或 4 位的液晶(LCD)显示。

由 2 个外部单刀单掷开关来完成所有时间的设置。可选择 12 小时或 24 小时两种显示模式。该电路可通过内部 5V 的电压调整器由电池进行供电或使用一个外部固定的电源供电。

定购信息

类型编号		封装								
	名称	描述	版本							
PCF1171C	VSO40	塑料小型表面封装;40脚;正面向下(1)	SOT158-2							
PCF1171CU	_	插槽上的芯片未经处理(2)	_							

注

- 1. 见图 1 和"表面封装"一节,可得到管脚的布线和封装信息。
- 2. 见"芯片规格和焊盘定位"一节,可得到焊点的布线和封装信息。

管脚配置

符号	管脚号	描述
OSC OUT	1	振荡器输出
OSC IN	2	振荡器输入
S1	3	小时设置
S3	4	±2 分钟校准
BP	5	64Hz 背极驱动(LCD 的公共端)
ADEG1	6	段驱动
C1	7	段驱动
E2	8	段驱动
D2	9	段驱动
C2	10	段驱动
E3	11	段驱动
D3	12	段驱动
СЗ	13	段驱动
符号	管脚号	描述
E4	14	段驱动

续上表

沃工 化		
D4	15	段驱动
C4	16	段驱动
B4	17	段驱动
S2	18	分钟设置
S4	19	内部电压调整
V_{SS}	20	负电源
S6	21	选择校准模式
S5	22	12/24 小时模式
V_{DD}	23	正电源
A4	24	段驱动
F4	25	段驱动
G4	26	段驱动
В3	27	段驱动
A3	28	段驱动
F3	29	段驱动
G3	30	段驱动
P1,P2	31	冒号闪烁
P3,P4	32	冒号静止
B2	33	段驱动
A2	34	段驱动
F2	35	段驱动
G2	36	段驱动
B1	37	段驱动
TR	38	测试复位;连接到(V _{DD})
TS	39	测试加速;连接到(V _{DD})
(V _{DD})	40	正电源测试端和振荡器输入端

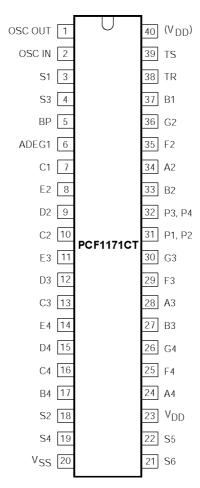


图 1 管脚配置, PCF1171CT, (VSO40)

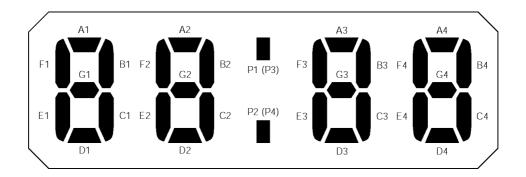


图 2 LCD 显示段

图 3 显示模式 (图中所示为 24 小时模式)

工作输入端

工作输入端 S1、S2 和 S3 含有内部上拉电阻,便于外部单刀单掷开关的使用。内部集成了一个去抖保护电路,防止输入端与去抖电压和寄生电压相连。

在以下描述中,如图 5 所示,将 S1、S2 和 S3 看作外部开关而不是输入端使用。

小时设置, 开关 S1

当 S1 闭合,小时根据 S6 所选校准模式增加(见"输入选项"一节)。

分钟设置/秒复位, 开关 S2

当 S2 闭合,分钟设置根据 S6 所选校准模式进行校准(见"输入选项"一节)。 每次 S2 闭合时,秒计数器复位到 0,当 S2 断开时开始工作。

段测试/复位, 开关S1和S2

如果 S1 和 S2 同时闭合, 所有 LCD 段点亮。当两个开关断开时, 时钟以 1:00(12 小时模式)或 0:00(24 小时模式)开始显示。

±2 分钟时间校准, 开关 S3

该开关在以下两种情况下操作:

- 显示≥58 分钟 00 秒的时间
- 显示≤1 分钟 59 秒的时间

当开关 S3 在上述情况下接通时,分钟和秒显示复位到 0。为了显示≥58 分钟 00 秒的时间,小时加 1。

输入选项

在以下描述中,如图 5 所示,将 S4、S5 和 S6 看作外部开关而不是输入端使用。

在实际应用中,这些输入端口上保持合适电平,以便给出所需功能模式。

内部/外部调整, 开关 S4

当使用内部调整时,闭合 S4,内部电压调整器激活,为 LCD 提供 5V 的电压。使用外部调整时,断开 S4,利用外部电压对电路进行供电。

12/24 小时模式, 开关 S5

使用 12 小时显示模式时, S5 与 V_{DD} 相连。

使用 24 小时显示模式时, S5 与 V_{SS} 相连。

单一/连续校准模式, 开关 S6

当使用单一设置校准模式时,S6 与 V_{DD} 相连。S1 或 S2 的每次闭合都将使计数器加 1。

当使用连续设置校准模式时,S6 与 V_{SS} 相连,S1 或 S2 的瞬时闭合将使计数器简单加 1,类似于单一设置模式。如果 S1 或 S2 保持闭合的时间大于 1S,计数器将在 S1 或 S2 保持闭合的每个完整 1 秒时间后以 1 为基数增加。

测试

正常情况下,测试输入 TR(38 脚)和 TS(39 脚)与 V_{DD} (23 脚)相连。从 BP 脚(5 脚)处得到测试频率(64Hz)。测试模式通过将 TS 连接到 V_{SS} (20 脚)来起动。所有输出频率以 65536 为因素增加。测试模式下最大输入频率为 100KHz(由外部振荡器由 OSC IN 端输入)。当 TR 与 V_{SS} 相连时,所有计数器(秒、

分钟和小时计数器)停止工作。在将 TR 连接到 V_{DD} 后,所有计数器从初始状态起动计数。

上面所描述的开关/输入在测试模式下可同样操作。

参数限制

遵循最大绝对额定值系统(IEC134)。

符号	参数	条件	最小	最大	单位
V_{DD}	相对 V_{ss} 的电源电压,内部电压调整器断开	注 1	-	8	V
V _I	所有输入电压		V_{SS} -0.3	V _{DD} +0.3	V
Tamb	工作环境温度		-40	+85	$^{\circ}\mathbb{C}$
Tstg	存储温度		- 55	+125	$^{\circ}\mathbb{C}$

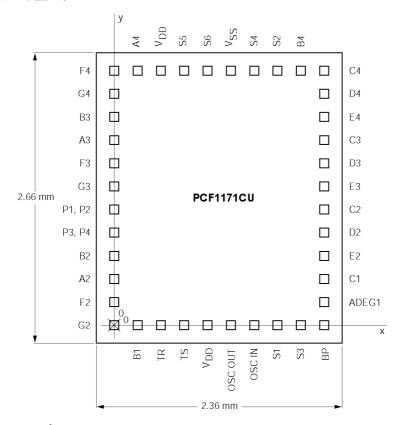
注

1. 只要外部电阻将电流限制在 10mA 内,即使接反电源极性也不会损坏电路。

操作处理

正常情况下,都要对输入和输出进行保护来防止静电放电。然而,为了安全起见,建议采取类似于 MOS 器件的处理措施。见"Data Handbook IC16, General, Handling MOS Devices"。

特性 除非特别说明, 否则 V_{DD}=5V; V_{SS}=0V; Tamb=−40 到+85℃; f=4.194304MHz; Rs=50Ω; C_L=12pF;


符号	参数	条件	最小	典型	最大	单位
电源						
V_{DD}	电源电压					
	外部调整		3	_	6	V
	内部调整	I _{REG} =1mA	4	5	6	V
I_{REG}	内部调整的调整电流		0.2	_	5	mA
I_{DD}	电流消耗	所有开关断开; 无	50	400	700	uA
		LCD; 内部调整断开;				
		注 1				
ro	内部差分电阻	I _{REG} =1mA	_	-	200	ms
振荡器(1利	12脚)(见注2)					
t_{OSC}	起动时间		_	_	200	ms
$\triangle f/f_{OSC}$	频率稳定度	$\triangle V_{DD}$ =100mA	_	0.2×10^{-6}	1×10^{-6}	
Rfb	反馈电阻		0.1	_	1	ΜΩ
Ci	输入电容		_	_	9	pF
Co	输出电容		19	24	29	pF
开关 S1、S2	和 S3 (18、3 和 4 脚)	以及测试输入 TS、TR(38	和 39 脚)			
Ii	输入电流	输入连接到 VSS	50	150	500	uA
td	去抖时间		32	_	150	ms
Rs	段驱动输出电阻	$I_L=\pm 50 \text{ uA}$	_	1	2.5	ΚΩ
R _{BP}	背极驱动输出电阻	I_L = $\pm 250 \text{ uA}$		0.2	0.5	ΚΩ
f_{BP}	背极驱动输出频率			64	_	Hz
Voffset(DC)	LCD DC 偏移电压	$R_L=200 \text{ K}\Omega$; $C_L=1\text{nF}$	_	_	±50	mV

注

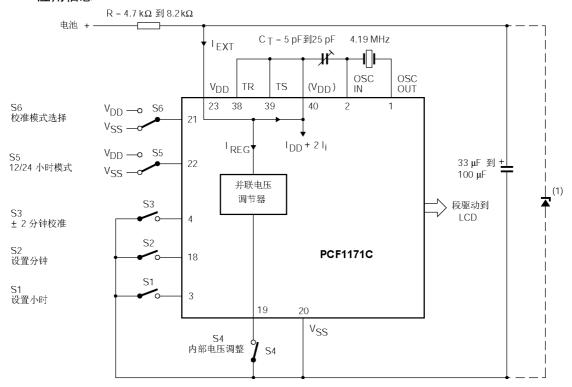
1. 电流 I_{EXT} = I_{REG} + I_{DD} + $2 \times Ii (+LCD 电流)。$

2. 为了使振荡器能正常工作, $V_{DD}{\geqslant}3V$ 。

芯片规格和焊盘定位

芯片面积: 6.28mm²。 焊盘规格: 110um×110um。 芯片厚度: 381±25um。

图 4 焊盘定位, PCF1171CU; 40 端

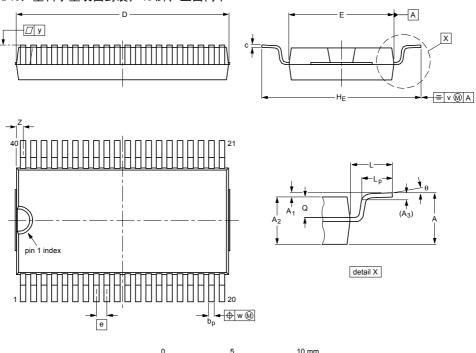

表 1 焊盘定位(以 um 为单位) X/Y 坐标都以 G2 焊点为中心,见图 4

焊点	X	Y	焊点	X	Y
OSC OUT	1060	0	S6	860	2320
OSC IN	1260	0	S5	660	2320
S1	1460	0	$V_{ m DD}$	460	2320
S3	1680	0	A4	240	2320
BP	1920	0	F4	0	2320
ADEG1	1920	240	G4	0	2080
C1	1920	460	В3	0	1860
E2	1920	660	A3	0	1660
D2	1920	860	F3	0	1460
C2	1920	860	G3	0	1260
E3	1920	1260	P1,P2	0	1060
D3	1920	1460	P3,P4	0	860

续上表

焊点	X	Y	焊点	X	Y
C3	1920	1660	B2	0	660
E4	1920	1860	A2	0	460
D4	1920	2080	F2	0	240
C4	1920	2320	G2	0	0
B4	1680	2320	B1	240	0
S2	1460	2320	TR	460	0
S4	1260	2320	TS	660	0
V_{SS}	1060	2320	V_{DD}	860	0
芯片角落(最大值)	— 220	— 170			

应用信息


(1) 只有需要时才使用内部调整。

从2脚(OSC IN)到其它管脚的寄生电容不能超过2pF。

图 5 典型应用框图

表面封装

VSO40: 塑料小型表面封装; 40 脚; 正面向下

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

	American american are active from the drighter from the disjunction of																	
UNIT	A max.	Α1	A ₂	Α3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.70	0.3 0.1	2.45 2.25	0.25	0.42 0.30	0.22 0.14	15.6 15.2	7.6 7.5	0.762	12.3 11.8	2.25	1.7 1.5	1.15 1.05	0.2	0.1	0.1	0.6 0.3	7°
inches	0.11	0.012 0.004		0.010		0.0087 0.0055	0.61 0.60	0.30 0.29	0.03	0.48 0.46	0.089	0.067 0.059	0.045 0.041	0.008	0.004	0.004	0.024 0.012	0°