Ć

)

应用光学

Vol. 17, No. 5 1996

光学补偿法的变焦距物镜的光学设计

OPTICAL DESIGN OF ZOOM OBJECTIVE WITH OPTICAL COMPENSATION METHOD

Wang Hong

(Changchun Institute of Optics and Fine Mechanics, Academia Sinica, Changchun)

Abstract: An optical design phocess of zoom objectine of which variable magnification and image shift compensation are completed with an optical compensating method. The design result is also given.

1

۱

Keywords, optical compensation, zoom, optical design

1 引言

16 -

第17卷 第5期

1996年

变焦距物镜补偿像面位移有机械补偿与 光学补偿两种方式。本设计采用光学补偿方 式设计了一个焦距 42~220mm(变倍比 5.2 倍),相对孔径 D/f=1/5,视场角 14.9°~ 2.9°的变焦距物镜。

2 设计过程

2.1 变倍部分

光学补偿法的变倍部分采用正组在前的 四透镜系统。如图1所示,由于光学补偿法 的变焦距物镜目前尚无专利和相关的光学设 计可供参考,因此本设计通过高斯光学计算、 解像差方程求 P[∞]、W[∞],确定初始解,像差 16

的校正与平衡等环节实现了变焦的目的。

图 1 四透镜系统

高斯光学计算主要解决的是焦距分配问题,它对整个变焦距物镜的设计十分重要,起 到了确定结构型式的作用。通过计算得到:主 光线在前固定组1上的高度是长焦距时最 大,变倍组2的主光线高度则是短焦距时最 大,轴上光线是长焦距时透镜组上的高度最 高。

3)

计算各组 P[∞]、W[∞]是为了在满足高斯光 学条件下进一步求解其结构参数。变倍部分 使各个焦距位置的像差达到相等,其初级像 差方程为

$$S_{i} = \sum_{i=1}^{4} h_{i}^{4} q_{i} p_{i},$$

$$S_{II} = \sum_{i=1}^{4} (h_{i}^{3} h_{i} p_{i} q_{i}^{3} p_{i} + j h_{i}^{2} q_{i}^{2} W_{i})$$

$$S_{II} = \sum_{i=1}^{4} (h_{i}^{2} h_{i}^{2} q_{i}^{3} p_{i} + 2j h_{i} h_{i} p_{i} q_{i}^{2} W_{i} + j^{2} q_{i})$$

$$S_{V} = \sum_{i=1}^{4} (h^{3} h_{i} q_{i}^{3} p_{i} + 3j h_{i}^{2} q_{i}^{2} W_{i} + j^{2} \frac{h_{i} p_{i}}{h_{i}} (3 + u_{i}) q_{i})$$

物在近距离的 P 和 W 与物在无限远时的 P[∞]、W[∞]的关系为

 $P = P^{\infty} - u_i(4W^{\infty} - 1) + u_i^2(3 + 2u)$ $W = W^{\infty} + u_i(2 + u)$

式中, u, 是近轴光线下各透镜与光轴夹角的 规化值, u,= f_i/l_i , u= $\frac{\Sigma q_i}{n}/\Sigma q_i \approx 0.6 \sim 0.65$ 。

对于单色像差而言,每一透镜组有两个 变数 P₁^{**}、W₂^{**},四组元变焦距物镜有 8 个自 由度,可列 8 个方程。令 S₁、S₁在四个焦距 位置、S₁在三个焦距位置相等。S₂没有必要 也不可能让它在各个焦距位置相等。根据经 验,只控制其最短焦距位置的畸变即可。将 整个焦距范围进行等分,然后逐次取第一焦 距位置和最长、最短焦距位置解联立方程,求 出 P₁^{**}、W₂^{**},再用该值对每一焦距位置计算 各种像差的起伏量,其中起伏量最小的解 P₁^{**}、W₂^{**},即为最佳解。因为各组元相对孔径 不大,所以均采用双胶合透镜组。由 P₀值确 定玻璃组合,然后再按胶合面半径尽量大,并 弯向光阑,以控制高级像差的原则,经过多 次比较,选择一组最佳初始解。合组双胶合 透镜玻璃均为K9、ZF1。

, 求出初始解后,用CAOD软件中的像差 分析程序进行像差分布计算。由解像差方程 到进行像差分布计算这一过程,一般要反复 多次,直至求出的高级像差小到满足要求为 止。薄透镜加厚后,初级像差发生了变化,又 因为高级像差的存在,因而需要进行各焦距 位置的像差平衡。由于变焦部分各组元的相 对孔径和视场较小,加厚时初级量变化较小, 而且高级像差也不大,所以只修改了一次就 得到了较好的结果。对于象本设计这样一个 经过初始解优化选择出来的系统,在进行像 差平衡时,用手工方法比用像差自动平衡程 序更为有效。

2.2 后固定组

变倍部分实现了变焦和像移补偿,同时 使各焦距位置的像差大小尽量相等。后固定 组则使整个光学系统的焦距具有特定的变化 范围,并保证像差与变倍部分匹配。根据设 计要求,后固定组采用负、正组分离的结构 型式,如图2所示。

图 2 采用负、正组分离型式 的后固定组示意图

满足了系统的焦距和后工作距离及 $S_{\mu\nu}$ 的要求。后固定组光焦度 φ 及负、正组主面之 间隔的确定,使得该结构型式前后组的变数 P_1^{s} 、 W_1^{s} 及 P_2^{s} 、 W_2^{s} 可以满足整个系统消去 S_1 、 S_1 、 S_1 、 S_2 、 W_2^{s} 可以满足整个系统消去 S_1 、 S_1 、 S_1 、 S_2 、 W_2^{s} 可以满足整个系统消去 s_1 、 S_1 、 S_1 、 S_2 、 W_2^{s} 可以满足整个系统消去 f 助力现场小,在求 解时可以将 S_{ν} 作为变数,这就相当于首先计 算出负组的像散 $j^2 \varphi_1$ 然后求出产生 $S_1 =$ $j^2 \varphi$ 的众多弯曲,从中选出高级像差的最小 解,而正组产生的 S_1 、 S_1 由负组消除。后固 定组相对孔径较小,采用双胶合透镜,玻璃

17

组合为 ZF₁、ZK₉。正组由于相对孔径大,采 用 双单单型式时高级 像差量最小,玻璃为 ZF₆、ZK₉。

变倍部分与后固定组连接之后,得到整 个光学系统的结构参数。计算像差分布可知, 由于后固定组的加厚引起球差、彗差、像散 等像差的变化,使其高级量变化很小。对后 固定组进行优化设计,使得最后的像差达到 使用要求。此时,目标值的设定要考虑各焦 距之间的平衡。

3 设计结果

图 3 为整个变焦距物镜的光学系统图 (导程 L=177.9mm)。

图 3 光学系统图

表1为特征频率为50对线/mm的四个 焦距位置的传递函数值。

规场 焦 MTF 值 距	0	0.71	1.0
45.62	0. 831	0. 763	0. 592
81.48	0. 829	0. 784	0. 630
153. 36	0. 828	0. 621	0. 431
204.60	0. 819	0. 721	0. 614

赛1 四个位置的传递函数值

表中四个焦距值是变焦距物镜像面位移 完全补偿的位置。其最大像面位移量为士 0.025mm,小于半倍焦深,满足使用要求。三 种波长 0.5893μm、0.6563μm、0.5461μm 取 相同的权重,是在一个公共像面上计算的 MTF 值。若都按焦距最佳像面位置来计算, MTF 值还要高。

4 结束语

综上可见,对于焦距不很大、相对孔径 较小的变焦距物镜,只要其最大像面位移量 满足使用要求,那么采用光学补偿法是完全 可行的。无论是初始结构的选择、还是最终 结果的确定、始终以像差理论为指导,严谨 分析、计算每一环节、最后得到的变倍部分 全部采用了简单的双胶合透镜,成像质量完 善著、机械结构简单,整个系统具有良好的工 艺性和可靠性。

参考文献

- 电影镜头设计组,电影摄影物镜光学设计,北 京,中国工业出版社,1971
- 2 史光辉,李媛媛.求解变焦距物镜像差方程程序
 . 仪器仪表学报、1993; (1): 76-80
- 3 王之江,光学设计理论基础,第二版,北京,科 学出版社、1985,216~217
- 4 史光辉,求满足 C₁、P[∞]、W[∞]透镜组的初始解程 序,仪器仪表学报,1988;(4);362-367
- 5 史光辉、丁甲民·长焦距大视场反射系统的光学 设计,仪器仪表学报、1991;(7):651-653