

Breast Cancer Probed by Fluorescence and Raman Spectroscopy

Cheng-hui Liu

Represent in Prof. Alfano's IUSL group

Department of Physics Institute for Ultrafast Spectroscopy and Lasers (IUSL) City College of New York USA

BIT's 3rd Annual World Cancer Congress (WCBC) -2010 – Shanghai - China, April 25-27, 2009

Properties and Processes of Light

Salient properties

- Wavelength (color)
- Time
- Polarization
- Coherence

Processes – Interaction with matter

- Emitted Fluorescence spectroscopy
- Absorbed Excitation spectroscopy
- Scattered Raman and elastic

Motivation

- Use optical spectroscopic techniques for noninvasive detection of Breast and other disease (Optical Biopsy)
 - Fluorescence
 - Stokes Shift
 - Raman
- Develop compact instrumentation and techniques, called Photonic Spectral Explorers (PSE), suitable for use in a clinical setting (surgical theater, doctor's office, civilian and military field deployment)

Fluorescence Detection

- Key native tissue fluorophores (no dyes) Collagen Elastin Tryptophan NADH **Flavins Porphyrins Structural and content changes** Thickening of basal cell layer
 - Increased vascularity

Key components in Absorption Spectra

Key Components in Emission Spectra

Optical Biopsy (1) - Fluorescence Data

Sensitivity and Specificity

Tissue Type <i>(in vitro)</i>	Number of Samples	Pathology	Sensitivity	Specificity	Year
Breast	16	Cancer	Cancer 87.5%		1988
	15	Normal		87%	
Breast	40	Cancer	92.5%		1988
	47	Benign and Normal		98%	
GYN	22	Malignant	95%		1992
	10	Non-Malignant		100%	
GYN	65	Cancer	97%		1994
	24	Normal		87.5%	
Colon	35	Cancer	94%		1995
	39	Normal		92%	
Breast	99	Cancer	90%		1995
	67	Normal		90%	

Sensitivity and Specificity (Continued)

Tissue Type <i>(in vitro)</i>	Number of Samples	Pathology Sensitivit		Specificity	Year
Breast	97	Cancer	95%		1006
	127	Normal		93%	1330
Breast	103	Cancer	90%		1998
	63	Normal		90%	1330
Esophagus (Barrett's)	31	Cancer	93%		1998
	33	Normal		93%	1550
Colon	11	Cancer	95%		1999
	11	Normal		95%	1555

Optical Biopsy (2) - Stokes Shift Spectral Technique

Optical Biopsy - Stokes Shift Spectral Data - 1

Absorption and Emission Peaks, the Stokes Shift of Key Biomolecules obtained from their Fluorescence and Absorption Spectra

Molecular	Absorption peak (nm)	Emission peak (nm)	Stokes shift (nm)
Tryptophan (T)	280	356	76
Collagen (C)	340	380	40
NADH (N)	340	460	120
Flavin (F)	375	520	145
	450	520	70

Optical Biopsy - Stokes Shift Spectral Data - 2

Optical Biopsy – (3) Raman spectral technique

- The Raman bands are more sharper in biological macromolecules
- Noninvasive, and independent of the size or shape of tissue
- Raman spectra can be obtained for components in various phases: crystal, powder, aqueous solution, gel forms with sub mm accuracy
- Raman frequencies arise from changes in the electronic polarizability associated with nuclear vibrational displacements
- By analyzing the Raman intensity changes and frequency shift, one can exam the molecular properties of a compound
- it is rapid real time diagnosis changes in structure and components with BBCA
- it can be performed with endoscopes, needles, and fibers

Energy level diagram showing the states involved in Raman signal

Raman Spectroscopy Detection key biochemical molecular changes

- Proteins: Collagen, Elastin
- Amino acids- Tyr. Tryp. Phen. Glycine
- Lipids- cholesterol, fat
- Enzymes & Coenzymes- NADH, Flavin
- Vitamins: Beta Carotene
- Structural and content changes: Thickening of basal cell layer Increased vascularity

Raman spectra of key basis biochemical components Tyrosine, Tryptophan, Phenylalanine, β -Carotene

Raman Spectra of Breast Tissues (1)

FT Raman spectrum from breast malignant tumor tissue

FT Raman spectrum from benign breast tissue

FT Raman spectrum from breast benign tumor tissue

The first Raman spectroscopy study

 $I_{1445} < I_{1657}$ - cancer Started in 1991, Lasers in Life Sciences 4(1), p23.

Raman Spectra of Breast Tissues (2)

Differences in NIR-FT Raman spectra for benign, benign tumor and malignant tumor of breast tissue between 700cm-1 to 1900cm-1

Tissue	Benign tissue	Benign tumor	Malignant tissue	Tentative assignment
Raman frequency	1651	1659	1651	Protein: Amide I, Collagen and Lipid, C=O stretching;C=C stretching from hydrocarbon region
• •	1445	1445	1445	Protein/Lipid, CH ₂ scissoring deformation
	1300-1240			Protein/Lipid, CH ₂ ,CH ₃ , twisting
		1240		Protein: Amide III
	1079			Lipid: C-C stretch
Relative intensity	I ₁₄₄₅ >I ₁₆₅₁ I ₁₀₇₉ < I ₁₃₀₀ <i<sub>1445<i<sub>1651</i<sub></i<sub>	: I ₁₄₄₅ <i<sub>1659</i<sub>	I ₁₄₄₅ <i<sub>1651</i<sub>	
Intensity ratio	1.25 (0.09)	0.93 (0.03)	0.87 (0.05)	

Raman Spectroscopy of GYN Tissues

 $I_{1445} > I_{1657}$ - cancer

Raman Spectroscopy of GYN Tissues

Tissues	Cancer		Benign or Normal		Assignment
	Cervix	Uterus	Cervix	Uterus	_
Test No.	6	9	3	7	Amide I C=O Stretching
Raman	1657 VS	1659 VS	1659 VS	1659 VS	
Frequency	1445 VS	1445 VS	1445 VS	1453 VS	δ (CH)2, δ Bending (CH)3
	1270 W 1330	1270 W 1330	1262 S	1262 VS	Amide III C-N Open Stretching
Relative	W W I ₁₆₅₇ < I ₁₄₄₅		I ₁₆₅₉ > I ₁₄₄₅		V (C-C) Stretching Tryptophane Mode

TABLE: NIR-FT Raman Spectra for Gynecological Tract Tissues

1657 = Amide I; C=O, C-N, NH, collagen 1445 = CH_2 , CH_3 1270 = Amide 3, C-N, collagen 1326 = elastin

Optical Biopsy 3rd Generation of the CD-Map (3)

Optical Biopsy - 3rd Generation (PSE) Compact Photonic Spectral Explorer - Ratiometer

PSE - Ratiometer

- Dual Channel Detection
- Excitation and Emission Ratios Fast Data Collection
- Multiple Wavelength Combination
- High UV Sensitivity
- Probe Integrates into Endoscope or Laparoscope
- Optical Needle Probe

PSE - Ratiometer - Needle Version

Compact Spectral Photonic Explorer (MAP)

Cancerous Breast Tissue Fluorescence Imaging

Comparison of Fluorescence Imaging, using the CSPE, between normal and cancerous breast tissue section

LED Excitation: 365nm

LP400 nm filter

It is safe!

Photonic Explorers Safe from UV

For skin change = 1/3 MED ~ 10 mJ/cm^2

Photonic Explorer units operate at 333 μ J/cm² at 300 nm (30 times less than threshold for skin change ~ 10 mJ/cm²)

 (UVC) Setlow weighted – action spectra for DNA damage (Proc. National Academy 71, 3363 (1974))
(UVB) Diffey Weight – action spectra weight for erythemal (Human Exposure, Bosnajakovic, editor 1987, p. 83 -)
(UVA) – melanoma (surprise in fish)

Examples of Photonic Explorers Safety Light Levels

Lamp, LED: 2.4 μ W (300 nm), 114 μ W/cm² (spot size 2.1 mm²) Weighted Setlow 3.8 μ W/cm² Weighted Diffey 7.4 μ W/cm² ACGIH spectral 20 μ W/cm²

PSE (20 sec operation exposure): Weight patient exposure 76 µJ/cm² (Setlow) 1480 µJ/cm² (Diffey) 400 µJ/cm² (ACGIH)

Taking maximum permissible exposure limit over 8 hours:
 $\sim 3 \text{ mJ/cm}^2 - 10 \text{ mJ/cm}^2$ Then PSE energy/cm² exposure is safer by
33 times (Setlow)33 times (Setlow)DNA
Erythema
7 times (ACGIH)

BIT 3rd-2010 BCC

Conclusion

- Fluorescence and Raman spectroscopy can be an important tool for detection of cancer and pre-cancer.
- High sensitivity and specificity (87%-95%) are obtainable in wide spectral region- from ultraviolet to infrared.
- Algorithms based on intensity ratios can reduce data collection time in clinical applications.
- A variety of fiber optic probes can be used to access multiple organ sites.
- Is it safe at µW levels / cm²? Yes

Breast Cancer Probed by Fluorescence and Raman Spectroscopy

Co Authors

Y. Budansky, G. Tang, Y. Yang, W. B. Wang and R. R. Alfano

Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, City College of the City University of New York, New York, NY 10031 (USA)

D. L Akins

CASI CENSES, Department of Chemistry, City College of the City Universityof New York, New York, NY 10031 (USA)

S. S. Lubicz

La Guardia Hospital, General Gynecology and Gynecologic Oncology, New York, NY 10128 (USA)

A. S. Heerdt

Memorial Sloan-Kettering Cancer Center, Department of Surgery, 300 EAST 66 Street, New York, NY 10021 (USA)

Acknowledgments

The authors are grateful to Dr. K. Sutkus and Dr. X. H. Ni for helping to prepare the slides.

The works were supported in part by NIH and DOE

BIT 3rd-2010 BCC

CUNY IUSL GROUP