文章编号:1005-7277(2014)01-0044-03

LED 技术在石油钻井照明中的应用探讨

戴海峰1,何小玉1、林雅玲2、崔 凯3

(1. 中国石油集团渤海装备制造有限公司, 河北 沧州,061000;

2. 中国石油勘探开发研究院,北京 100083; 3. 中国石油技术开发公司,北京 100028)

摘要:通过对LED的介绍,比较了传统光源与LED性能,针对石油钻井现场防爆照明的要求,指出了使用LED的优越性,并提出了技术指标。

关键词: LED照明; 石油钻井现场; 高效节能

中图分类号: TM938.12

文献标识码: A

Application of LED technology in the oil drilling lighting

DAI Hai-feng¹, HE Xiao-yu¹, LIN Ya-ling², CUI Kai³

- (1. CNPC Bohai Equipment Manufacturing Co., Ltd., Cangzhou 061000, China;
- 2. Research Institute of Petroleum Exploration & Development, Beijing, 100083, China;
- 3. China Petroleum Technology and Development Corporation, Beijing 100028, China)

Abstract: Through the introduction to the LED, the performance of traditional light source and LED are compared. The superiority of LED is pointed out for explosion-proof lighting requirements of oil drilling field, and the technical indexes are also put forward.

Key words: LED lighting; oil drilling field; high efficiency and energy saving

1 前言

石油钻井现场属于特殊作业环境,与常规照明要求相比有明显的不同。例如,在配光均匀性、光源的显色指数及色温等方面,要求不很严格;然而,在照明灯具的品质、抗振动性、恶劣环境的耐受性及防爆安全性等方面,有其特殊的要求。目前,石油钻井现场的照明,主要使用荧光灯、金卤灯等气体放电光源。这类光源作为商业、家居照明使用时,有着难以比拟的优越性。然而,这类光源用在石油钻井现场时,其弊端显而易见,如抗振动性差,耐低温性能差等。因此,有必要寻找一种新型光源,从发光原理和灯具结构上解决这些问题。LED技术是一种固体光源,用它研制生产的防爆灯具,与传统的相比,在结构、电气、配光及防爆等方面,有着本质的不同。本文就LED防爆灯在石油钻井现场这类特殊作业环境中的应用要求进行探

讨,以期在照明灯具选型中提供一定的参考。

2 现场环境特点和照明现状

石油钻井现场的照明环境有其特殊性,主要有 以下4点。

- (1)爆炸性。遇明火、电火花、高温等点燃源,可能引起燃烧甚至爆炸。为保障安全,所安装使用的电器(包括照明灯具)应是安全防爆的。
- (2) 振动大。在钻井中,特别是搬迁时,设备振动大。因此,所安装使用的电器设备应具有良好的抗振动性能。
- (3) 高危、连续作业、更换维护困难。因此照明 灯具应寿命长、维护少。
- (4)气候条件恶劣,因此灯具应具有较高的环境适应性。

目前井场照明的灯具大多为荧光灯或金卤灯。 这类灯具技术成熟,视觉舒适,普遍应用于室内及 一般照明,用于井场环境时其弊端显而易见。一是抗振动性差,易损坏。井场设备振动性强,特别是在搬迁过程中振动较大,由玻璃制成的灯管往往损坏殆尽,需要大批量更新更换,形成大量人力物力损耗,汞蒸气和碎玻璃还给环境造成危害;二是故障多,且维修困难,特别是井架等高危设备部位,一旦灯具损坏,无法及时维修,将严重影响夜间安全生产;三是安全系数低,尤其是金卤灯一类的气体放电灯,工作时灯具温度高,容易成为安全事故隐患;四是环境适应性差,在低温环境下时,往往无法正常工作。

3 LED技术及其照明的优势

3.1 LED光源

LED (Light Emitting Diode)即发光二极管,是一种固态的半导体器件,它可以直接把电转换为光。

自1907年发现电致发光(LED)现象以来,已走过100多年的路程,20世纪90年代以来,LED技术不断取得突破,在显示、指示、中大尺寸背光源等领域的技术日趋成熟,应用领域不断扩展。在功能性照明领域,LED技术虽然处于起步阶段,但发展速度迅猛,目前光效在120Lm/W以上的白光LED已经批量生产。成为继白炽灯、荧光灯、高压金属气体放电灯之后出现的第四代电光源,被称作电光源的终极形式。如图1所示为LED发展史。

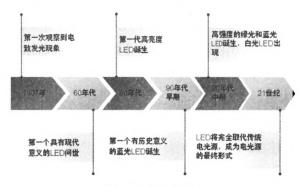


图1 LED发展历史

由发光原理所决定的LED,是迄今为止寿命最长、节能效益最高的电光源,不含有害物质、环保无污染、耐振动、抗冲击的优点也是其他传统光源所无法比拟的。如图2、3、4、5分别为白炽灯、荧光

灯、高强度气体放电灯及LED示意图。各种光源的 发光原理如表1所示,传统光源与LED的性能比较 如表2所示。

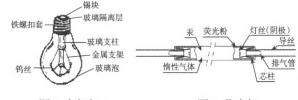


图 2 白炽灯

图 3 荧光灯

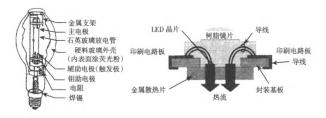


图 4 高强度气体放电灯

图 5 LED

表1 各种电光源的发光原理

光源	发光原理	寿命终结
白炽灯	电流通过白炽灯中的螺旋形钨 丝时,会发生热效应,从而使白 炽灯辐射出可见光和红外光。	钨丝的蒸发损失,导致灯丝熔断。
荧光 灯	镇流器供脉冲电压使灯丝预热及灯丝(阴极)上的电子发射材料激活,电子与灯管内部汞原子发生碰撞产生紫外光,紫外光通过涂在灯管管壁的荧光粉折射出可见光。	被耗尽而不能再发
	放电管内的电子、原子、离子之 间的相互碰撞。	发射材料耗尽,使电 弧不能触发。
LED	PN 结中电子与空穴的复合发 光。	光衰过大,或 PN 结 被击穿。

表 2 LED与其他电光源的比较

							好 一般 差			
	白炽灯	卤钨灯	荧光灯	无极灯	低压钠灯	高压納灯	汞灯	金卤灯	LED	
光效 (Lm/W)	10	20	60	90	200	120	40	60	110	
显色 指数	100	100	80	80	20	30	50	70	80	
寿命 (H)	1000	2000	5000	50000	15000	25000	8000	10000	50000	
启动	无延时	无延时	无延时	无延时	延时	延时	延时	延时	无延时	
闪烁	无	无	有	有	有	有	有	有	无	
电磁干扰	无	无	无	有	无	无	无	无	无	
重金属 污染	无	无	有	有	有	有	有	有	无	
抗震性	差	差	差	差	差	差	差	差	好	
配光灵 活性	差	差	差	差	差	差	差	差	好	
紫外线	无	无	有	有	无	无	有	有	无	

3.2 LED照明

LED照明是继白炽灯、荧光灯之后照明光源的

又一次革命,被各国公认为最有发展前景的高效照明产业。目前,作为新一代光源技术,LED正在被人们广泛认知认同,越来越多的LED照明产品出现在道路、广场、车站、码头以及城市景观等场所,在一些对节能和寿命要求高,维修不便的不间断照明场所,如隧道、地下停车场等,LED优势明显,效益显著。

4 LED应用于石油钻机井场照明的优势

用LED光源研制生产出来的防爆灯具,应用于 井场照明时有以下特殊的优势。

(1)优异的安全防爆性能。采用直流低电压 (≤36V)驱动的LED,由于光效高,发热量少,在 安全电压和低温(T6≤85℃)状态下运行,既提高 了灯具本身的防爆性能,也从源头降低了因灯具 引起的事故,提高了井场的安全保障水平。

由于LED灯具功率小,输入电流低,减少了电缆过热老化倾向,提高了供电线路安全。

- (2)优良的抗振动性能。LED为固态光源,其优异的抗振动、耐冲击性能是任何一种传统光源所无法比拟的。用于井场照明从根本上克服了玻璃灯管造成的不耐振动、极易损坏的弊端,可节省人力物力,降低维护成本,减少环境危害。
- (3)超长的使用寿命。LED直接将电转化为光, 工作时无机械性损伤,光源的有效使用寿命可达 50000-100000小时,是迄今为止使用寿命最长的 电光源,这将大大减少灯具的维修频率,对保障生 产发挥积极的作用。
- (4)超强的环境适应能力。LED耐低温性能大大优于传统光源,经过必要的处理可在-45℃及以下环境中正常点亮和工作,这为解决低温条件下井场照明难题提供了有效方案。
- (5)高效节能。与传统光源相比,LED节能60%以上,用于井场照明意味着节省价格不菲的燃油,对于日趋流行的网电钻井,则节电效益更为直接和显著。用于应急照明,同样容量的蓄电池,由于效率高(无需电路逆变)可成倍延长照明时间。

5 石油钻井现场LED推荐技术指标

5.1 LED光源

- (1)光效≥100 Lm/W;
- (2)显色指数≥80;
- (3)相关色温 通常在低照度场地宜用暖色表 $(T_{CP} < 3300K)$,中等照度用中间色表(3300K $\leq T_{CP} < 5300K$),高照度用冷色表($T_{CP} > 5300K$)。另外在 温暖气候条件下采用冷色表,而在寒冷条件下采用暖色表,一般情况下,采用中间色表;
 - (4)光源寿命≥50,000h。

5.2 电源

- (1)采用恒流式驱动,输出电流稳定精度≤±25%;
- (2)用于防爆的电源输出电压≤DC 36V;
- (3)宽电压宽频率输入,适应不同国家和地区 电网用电要求:
 - (4)功率因子≥90%;
 - (5)电源内部应有短路、过压、过热保护。

5.3 灯具材质和结构

- (1)灯具壳体应采用铝金属材料,强度符合要求,同时具备良好的散热结构和充分的散热面积;
 - (2)结构合理,便于安装维护。

5.4 防护防爆性能

- (1)防护等级 户外型灯具应不低于IP65;
- (2)防腐性能 户内型灯具应不低于F1,户外型灯具应不低于WF1;
- (3)防爆性能 防爆的LED灯具,其性能应符合 GB3836-2010《爆炸性环境》相关规定的要求,并 通过国家权威机构的检验。

5.5 低温灯具

应符合GB/T 2423.1-2008《电工电子产品环境试验 第2部分:试验方法 试验A:低温》规定的要求,并通过国家权威机构检测。

5.6 应急装置

- (1)应急时间不少于60min;
- (2)应急响应时间≤1s;
- (3)电池充放电循环次数≥500次:

(下转第50页)

主つ	单相接地洗线及测距结果
3 27 2	单相传现优线及侧距结果

线路 名称	接地电阻	实际接地 距离(km)	选线	测距 (km)			· 误差(m)	误差率
				A相	B相	C相	庆左(m)	(%)
下一线	0	1	下一线	1.016	1.016	1.016	16	1.6%
	0	2	下一线	1.95	1.95	1.95	50	5%
	100	2	下一线	1.97	1.97	1.97	30	3%
东干线	0	2	东干线	2.031	2.031	2.031	31	1.6%
	0	2.73	东干线	2.801	2.801	2.801	71	2.6%
	1000	2.73	东干线	2.867	2.867	2.867	137	5%

线路A、B、C三相分别做1次接地故障选线和测距,以检测不同相故障检测结果的分散度。从下一线和东干线选线及测距结果表明:单相接地选线准确率达到100%,测距误差均能控制在150m以内,误差率能够有效控制在5%以内,选线及测距结果能够满足配电网线路接地故障检测需求。

5 结束语

基于行波法的配电线路故障选线及测距技术的故障行波,具有不受CT饱和影响、不反映系统振荡、与过渡电阻无关、不受线路分布电容影响等优点,且能在复杂的、使用传统方法难以检测故障的

情况下判断出故障的发生,给出故障的性质和位置,具有简单可靠、测量精确等优点,有较高的工程实用价值。

参考文献:

- [1]马士聪,高厚磊,徐丙垠,等.配电网故障定位技术综述 [J]. 电力系统保护与控制, 2009,37(11):119-124.
- [2]谢成明.输电线路故障测距的研究现状与进展[J].电工技术,2007(12):30-31.
- [3]李 畅,赵 晶,陈 岭.一种基于行波法的
- 新型线路故障定位装置的研制[J].广东电力,2006(5):42-
- [4]于盛楠,杨以涵,鲍 海.基于C型行波法的配电网故障 定位的实用研究[J].电力系统保护与控制,2007,35(10):
- [5]王振浩,周文姝,李国庆.基于暂态行波的配电网故障仿真分析[J].电气自动化,2011,33(1):69-72.

作者简介:

党**锴钊**(1964-),男,电力系统及其自动化专业,电力高级工程师,主要从事供配电网技术与管理工作。

收稿日期:2013-04-28

(上接第46页)

(4)设有光敏控制开关和工作状态指示灯。

6 LED选择、应用注意事项

ዹኯጙኯጙኯዹኯዹዀጙኯጙኯጙኯዹኯዹዀዀዀዀ

在选择、使用LED防爆灯具时,需要注意以下两个方面。

- (1)在目前的状况下,应当选用国际知名品牌的LED,这样才能保证灯具质量的可靠性和照明的舒适性。
- (2)保证良好的散热系统。由于LED属于半导体元器件,工作时,芯片的温度直接影响其寿命,因此使用时应当充分考虑灯具的散热。

7 结束语

通过以上阐述可知,尽管LED还存在有眩光、

价高等一系列问题。但是用于石油钻井的照明仍 然是很有前途。

参考文献:

- [1]王艳平. 基于功率因数校正电路的LED照明电源设计[J].
- [2]张 波,曹丰文,汪义旺. LED路灯驱动及智能调光系统的研究与设计[J].
- [3]朱 虹, LED照明驱动及自适应调光技术[J].

作者简介:

載海峰(1963-),男,碩士,石油机械设计与制造专业。现为 中国石油集团渤海装备制造有限公司副总工程师。

何小玉(1974-),女,大学,机械设计与电气自动化工程专业,工程师。

收稿日期:2013-10-10

LED技术在石油钻井照明中的应用探讨

作者: 戴海峰,何小玉, 林雅玲, 崔凯, DAI Hai-feng, HE Xiao-yu, LIN Ya-ling, CUI Kai

作者单位: 戴海峰,何小玉,DAI Hai-feng,HE Xiao-yu(中国石油集团渤海装备制造有限公司,河北沧州,061000),林

雅玲, LIN Ya-ling(中国石油勘探开发研究院, 北京, 100083), 崔凯, CUI Kai(中国石油技术开发公司, 北

京, 100028)

刊名: 电气传动自动化

英文刊名: Electrical Drive Automation

年,卷(期): 2014,36(1)

本文链接: http://d.g.wanfangdata.com.cn/Periodical_dqcdzdh201401011.aspx