技术中心
 
 

解析LED灯珠变色的6种情况

   日期:2016-03-01    
核心提示:LED 产品的可靠性日益受到了制造厂商及使用者的关注。而作为产品基本构成单元的LED 灯珠, 其质量的好坏直接影响着LED 成品的可靠性, 在实际应用中就常常发生因LED 灯珠的失效导致成品出现功能异常甚至完全失效的情况。近年来, 因灯珠变色导致成品出现色温漂移、流明降低和出光效果变差等一系列可靠性问题的案例日益增多, 使众多的LED 产品生产厂家及用户遭受了严重的经济损失。

LED 产品的可靠性日益受到了制造厂商及使用者的关注。而作为产品基本构成单元的LED 灯珠, 其质量的好坏直接影响着LED 成品的可靠性, 在实际应用中就常常发生因LED 灯珠的失效导致成品出现功能异常甚至完全失效的情况。近年来, 因灯珠变色导致成品出现色温漂移、流明降低和出光效果变差等一系列可靠性问题的案例日益增多, 使众多的LED 产品生产厂家及用户遭受了严重的经济损失。

本文通过几个LED 灯珠失效案例, 分析了导致LED 灯珠发生变色失效的根本原因。

封装胶原因

(1)封装胶中残留外来异物

失效灯珠的外观呈现局部变色发黑。揭开封装胶, 发现有一个黑色异物夹杂在封装胶内, 用扫描电镜及能谱仪(SEM&EDS) 对异物进行成分分析[5-6], 确认其主成分为铝(Al)、碳(C)、氧(O) 元素, 还含有少量的杂质元素, 测试结果如下图所示。结合用户反馈的失效背景可知, 该异物是在封装过程中引入的。

 

QQ截图20160229103938_副本.jpg

(2)封装胶受化学物质侵蚀发生胶体变色

失效品为玻璃光管灯, 内部的LED 灯带使用单组份室温固化硅橡胶粘结固定在玻璃管上, 固胶部位灯带上的LED 灯珠出现发黄变暗现象。失效灯珠封装胶的材质为硅橡胶, 使用SEM&EDS 测试封装胶的元素成分, 发现其比正常灯珠封装胶成分多检出了硫(S) 元素, 测试结果如下图所示。

 

QQ截图20160229103938_副本.jpg

通常硫磺、有机二硫化物和多硫化物等含硫物质可以作为硫化剂, 使橡胶发生硫化交联反应, 从而使橡胶的结构改变, 呈现出颜色发黄变暗、热分解温度升高的现象。

通过TGA 测试灯珠封装胶体的热分解温度可知, 失效灯珠封装胶在失重2 %、5%、10 %、15 %和20 %时的温度均比同批次良品封装胶相同失重量的温度高出25 ℃以上, 封装胶热分解曲线如下图所示, 证实了封装胶因发生硫化交联导致其热分解温度升高的现象。使用ICPOES进一步对起固定作用的单组份固化硅橡胶进行化学成分分析, 检出其中含有约400 ppm 的硫(S) 元素。

 

QQ截图20160229103952_副本.jpg

由此可知, LED 灯珠发黄变暗的原因为玻璃灯管内粘结固定用的单组份室温固化硅橡胶在固化过程中挥发出的含硫(S) 的气体侵入到了LED 封装胶中, 使封装胶发生了进一步的硫化交联反应,而再次硫化交联导致封装胶体变黄变暗。后续用户改用未使用单组份固化硅橡胶的塑料灯管则未出现灯珠变色的现象。因此, LED 生产方在产品设计选材和制造时应考虑产品各部件所用不同材料相互间的匹配性, 避免因材料的不兼容而导致后续出现可靠性问题。

荧光粉沉降

灯珠装配成LED 灯具后在仓库储存时, 发生了色温漂移失效, 失效LED 灯珠的封装胶由橙色变为浅黄色, 对其进行I-V 特性测试, 发现灯珠可以正常点亮, 且I-V 曲线正常, 只是出光亮度发生改变。取一些失效灯珠, 以机械开封方式取出封装胶, 发现支架表面均残留有透明颗粒物, 使用SEM&EDS 测试颗粒物成分, 结果显示其含有高含量的锶(Sr) 元素, 如下图所示。

 

QQ截图20160229104006_副本.jpg

而封装胶与支架接触面也检出了高含量的锶( Sr) 元素和钡(Ba) 元素, 如下图所示。

 

QQ截图20160229104015_副本.jpg

与之相比, 良品灯珠开封后, 支架表面较干净, 表面主成分为银(Ag)和少量的碳(C) 元素, 未检出锶(Sr) 元素, 且在其封装胶与支架的接触面上也未检出锶(Sr) 和钡(Ba) 元素。通过测试失效品和良品灯珠封装胶的截面成分得知, 二者所用的荧光粉的成分相同, 均为钇铝石榴石( 主要成分为氧(O) 、铝(Al) 和钇(Y) ) 与硅酸锶钡( 主要成分为碳(C)、氧(O)、硅(Si)、锶(Sr)、钡(Ba) 和钙(Ca)) 混合荧光粉。

因此, LED 灯珠的失效原因为所使用的硅酸盐荧光粉沉降到了封装胶底部及支架表层, 致使因光折射规律不一致而发生色散现象, 导致色温漂移, 同时发生灯珠变色现象。

支架原因

(1)异物污染支架

失效灯珠一侧变色, 揭开封装胶后可以看到变色部位的支架的表面覆盖了一层异物, 对异物进行元素成分测试, 显示其主成分为锡( Sn) 、铅(Pb) 元素, 测得的结果如下图所示。

 

QQ截图20160229104026_副本.jpg

揭开灯珠变色部位外围的白色塑胶, 在与白色塑胶接触的支架表面也检出了锡(Sn)、铅(Pb) 成分。由于异物覆盖部位的支架与灯珠一侧的引脚相连, 而引脚采用锡铅焊接。显而易见, 如果灯珠在进行表面贴装时, 引脚沾附了多余的锡膏, 则在焊接时, 熔化的焊料会沿着引脚爬升至与之相连的支架表面, 形成覆盖层。因此, 此案例中LED 灯珠失效的原因是LED 灯珠在进行组装焊接时, 引脚焊接部位的焊料进入了支架表面, 形成了覆盖物, 从而导致了灯珠变色。

(2)支架腐蚀

失效LED 灯珠的中间部位变色发黑, 开封后将其放在光学显微镜下观察, 发现整个支架的表面明显地变黑, 使用SEM&EDS 测试发黑支架的成分, 结果显示, 除了正常的材质成分外, 发黑支架中还具有较高含量的腐蚀性硫(S) 元素, 而支架表面镀银层局部也呈现出疏松的腐蚀形貌, 如下图所示。

 

QQ截图20160229104026_副本.jpg

通常LED 灯珠在生产过程中, 由于材料自身不纯或工艺过程污染等原因引入硫(S) 、氯(Cl) 等腐蚀性元素时, 在一定条件下(如高温、水汽残留等), 其金属支架极易发生腐蚀, 导致灯珠出现变色、漏电等失效现象。

(3)支架镀层质量差

LED 灯珠点亮老化后出现变色发黑现象, 且失效率高达30 % 。去掉灯珠表面的封装胶后, 发现支架表层银镀层失去原有的光亮, 呈现灰色。使用SEM 观察支架表层微观形貌, 发现与未装配的半成品支架相比, LED 失效灯珠的支架表面银层疏松且有较多的孔洞。将半成品支架和失效LED 制作成切片, 观察其截面镀层质量, 发现支架镀层结构为铜镀镍再镀银,与半成品相比,失效品支架的镍镀层变薄,表层银层变得疏松,且镍银镀层界限变得模糊。

使用AES 测试失效LED 支架浅表层成分, 发现其中会有镍(Ni) 元素, 测试结果如下图所示, 很显然, 镍镀层扩散至了银层表面。由此得出, LED 灯珠变色的原因为所用的支架镀层不良, 老化后银层疏松产生孔洞, 镍层经过银层孔洞扩散到银层表面, 导致银层发黑, 灯珠变色。

 

QQ截图20160229104045_副本.jpg

在众多的LED 变色失效案例中, 因支架变色或腐蚀导致的失效所占的比例是最高的。因此,LED 或支架生产方应采取一些措施来预防产品失效。

例如:选择质量良好的、耐蚀的支架基材;采取适宜的电镀工艺条件,保证形成晶粒细腻、结构致密的镀层,镀层厚度均匀并达到防护要求;对于表层镀层为银的支架,选取有效的银保护工艺,提高银支架的防变色能力;在LED 生产装配的过程中,则应防止外来的污染或腐蚀性物质的引入,确保LED 封装严密,以降低因环境中的水汽和氧气等的侵入而引发各种腐蚀的可能性。

 
  
  
  
  
 
更多>同类技术
 
全年征稿 / 资讯合作
 
推荐图文
推荐技术
可能喜欢