收藏
当前位置: 首页 » 测控百科 » 精密/无损检测 » 无损检测 » 红外热像仪

红外热像仪编辑词条

红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。

1历史渊源 由来:1800年英国物理学家F. W.赫胥尔发现了红外线,红外线是一种电磁波,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。

著名的普朗克定律表明温度、波长和能量之间存在一定的关系,红外总能量随温度的增加而迅速增加;峰值波长随温度的增加向短波移动。根据斯蒂芬·玻耳兹曼定律,当温度变化时,红外总能量与绝对温度的四次方成正比,当温度有较小的变化时,会引起总能量的很大变化。 

2仪器简介 红外热像仪最早是因为军事目的而得以开发,后来迅速向民用工业领域扩展。自二十世纪70年代,欧美一些发达国家先后开始使用红外热像仪在各个领域进行探索。红外热像仪也经过几十年的发展,已经发展成非常轻便的现场测试设备。由于测试往往产生的温度场差异不大和现场环境复杂等因素,好的热像仪必须具备320*240像素、分辨率小于0.1℃、空间分辨率小、具备红外图像和可见光图像合成功能等。由于红外热成像技术能够进行非接触式的、高分辨率的温度成像,能够生成高质量的图像,可提供测量目标的众多信息,弥补了人类肉眼的不足,因此已经在电力系统、土木工程、汽车、冶金、石化、医疗等诸多行业得到广泛应用,未来的发展前景更不可限量。[1] 3原理及影响测温的因素 红外热像仪是能够实现热像测温的精密仪器,是红外热像测温的核心设备。它利用实时的扫描热成像技术进行温度分析,图1所示为民用市场上应用的主流热像仪,其结构简单、功能强大、测温快。  

红外热像测温技术就是通过红外探测器接收被测物体的红外辐射,再由信号处理系统转变为目标的视频热图像的一种技术。它将物体的热分布转变为可视图像,并在监视器上以灰度或伪彩显示出来,从而得到被测物体的温度分布场信息。

由于红外热像仪属于窄带光谱辐射测温系统,使用其进行温度测量时所测得的物体表面温度,不是直接测量得到的,而是以测到的辐射能计算出来的。因此,实际测量时,测量精度受被测表面的发射率和反射率、背景辐射、大气衰减、测量距离、环境温度等因素的影响。[2] 

4应用范围 一、电力设备检测 

输电设备:接头、绝缘子、夹板、跳线、高压线、压接套管、瓷瓶引线……变电系统:互感器、隔离开关、空气断线器、油断路器、少油量断路器、避雷器、电容器、电抗器、变压器、总线、套管、整流器、绝缘子、线夹、阻波器……配电系统:配电盘、开关箱、变压器、断电器、接触器、保险丝、电缆……发 电 厂:发电机碳刷绕组装备、发电机、变压器、油枕、发电机馈电线、电压调节器、发电机马达控制中心电盘、UPS……

二、建筑楼宇检测

建设系统:检查外墙空鼓、剥落、屋面渗漏、管道、热桥、建筑节能研究、竣工验收等; 公路桥梁:可用于快速扫描公路裂纹、桥梁开裂、渗漏检查、沥青摊铺等;

三、冶金系统:用于大型高炉料面测定、热风炉的破损诊断和检修等;高炉、钢材成型

四、加工和热处理:焊接、铸件、模具、炼钢炉、转炉、鱼雷车、炉壁、金属热处里(退火、回火、淬火)、冷/热轧钢板、钢卷线材等温度量测监控……

五、石化系统:可用于保温隔热材料的破损诊断、加热炉管的温度分布测定等;

六 转动机械设备:马达、马达碳刷、轴承、联轴器、泵浦、汽机叶片、齿轮箱、驱动齿轮、驱动皮带、联轴器、射出成型机、柴油机、空压机……机电系统:可用于新产品开发试验研究、大型机电设备温度分布监测等;

七、锅炉反应炉加热炉:
炉壁、炉管、烟囱、热交换器、水泥旋窑……

八、产品流程设备:安全阀、气体/产品管路(保温、保冷)、热交换器、冷却塔、桶槽、球槽、储存槽、空气干燥机、烘干机、冷冻器……

九、电子产品:PC板热分析、电子组件热传导测试、壳散热测试、电路设计、环境评估……

十、消防安保系统:可用于消防科研、火灾救人、安保、走私监控等;

十一、自然科学:采光、温室效应、沙尘暴、植物、采矿、地震等;

十二、医疗:肿瘤、甲状腺、糖尿病、非典、禽流感、针灸经络等;

十三、军事:导弹制导,红外雷达,炸药性能提升,红外夜视、红外隐身等;

十四、其它:玻璃、塑料、造纸、纺织、包装、排污、电影广告策划、高铁等高速运行设备磨损检测……

各行各业都有红外热像仪的应用领域。 

5使用注意事项 1、确定测温范围: 

测温范围是热像仪最重要的一个性能指标。每种型号的热像仪都有自己特定的测温范围。因此,用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。根据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将超过由发射率误差所引起的辐射能量的变化,因此,用户只需要购买在自己测量温度内的红外热像仪。

2、确定目标尺寸:

红外热像仪根据原理可分为单色测温仪和双色测温仪(辐射比色测温仪)。对于单色测温仪,在进行测温时,被测目标面积应充满热像仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入热像仪的视声符支干扰测温读数,造成误差。相反,如果目标大于热像仪的视场,热像仪就不会受到测量区域外面的背景影响。

3、确定光学分辨率(距离系灵敏):

光学分辨率由D与S之比确定,是热像仪到目标之间的距离D与测量光斑直径S之比。如果测温仪由于环境条件限制必须安装在远离目标之处,而又要测量小的目标,就应选择高光学分辨率的热像仪。光学分辨率越高,即增大D:S比值,热像仪的成本也越高。确定波长范围:目标材料的发射率和表面特性决定热像仪的光谱响应或波长。对于高反射率合金材料,有低的或变化的发射率。在高温区,测量金属材料的最佳波长是近红外,可选用0.18-1.0μm波长。其他温区可选用1.6μm、2.2μm和3.9μm波长。由于有些材料在一定波长是透明的,红外能量会穿透这些材料,对这种材料应选择特殊的波长。如测量玻璃内部温度选用1.0μm、2.2μm和3.9μm(被测玻璃要很厚,否则会透过)波长;测量玻璃内部温度选用5.0μm波长;测低温区选用8-14μm波长为宜;再如测量聚乙烯塑料薄膜选用3.43μm波长,聚酯类选用4.3μm或7.9μm波长。厚度超过0.4mm选用8-14μm波长;又如测火焰中的CO2用窄带4.24-4.3μm波长,测火焰中的CO用窄带4.64μm波长,测量火焰中的NO2用4.47μm波长。

4、确定响应时间:

响应时间表示红外热像仪对被测温度变化的反应速度,定义为到达最后读数的95%能量所需要时间,它与光电探测器、信号处理电路及显示系统的时间常数有关。如今红外热像仪的反映速度都很快。这要比接触式测温方法快得多。如果目标的运动速度很快或测量快速加热的目标时,要选用快速响应红外热像仪,否则达不到足够的信号响应,会降低测量精度。然而,并不是所有应用都要求快速响应的红外热像仪。对于静止的或目标热过程存在热惯性时,红外热像仪的响应时间就可以放宽要求了。因此,红外热像仪响应时间的选择要和被测目标的情况相适应。

6应用案例 1982年4月─6月,英国和阿根廷之间爆发马尔维纳斯群岛战争。4月13日半夜,英军攻击承军据守的最大据点斯坦利港。3000名英军布设的雷区,突然出现在阿军防线前。英国的所有枪支、火炮都配备了红外夜视仪(便携式红外热像仪,下同),能够在黑夜中清楚地发现阿军目标。而阿军却缺少夜视仪,不能发现英军,只有被动挨打的份。在英军火力准确的打击下,阿军支持不住,英军趁机发起冲锋。到黎明时,英军已占领了阿军防线上的几个主要制高点,阿军完全处于英军的火力控制下。6月14日晚9时,14 000名阿军不得不向英军投降。英军领先红外夜视器材赢得了一场兵力悬殊的战斗。

1991年海湾战争中,在风沙和硝烟弥漫的战场上,由于美军的先进传感器技术使他们在战争中获得了全面的信息优势——红外热像仪,M1A1坦克装备的热成像仪在夜间或烟雾条件下可以识别1500米内的目标,而探测距离远达3000米。伊军T-72M配备的只是第二代微光夜视仪,最大探测距离800米、甚至更短。这使M1A1坦克普遍做到先敌开火、机载前视红外热像仪可以发现埋在沙子下的伊军坦克。战后很多伊军坦克兵俘虏回忆,他们只能朝着炮口火焰还击。所以,T-72M与M1A1的在海湾战争的较量,就像是一个瞎子与一个视力正常的人在搏斗,而这个视力正常的人还更强壮一些,T-72M战绩为0的惨败也就不足奇怪了。由此可以看出红外夜视器材在现代战争中的重要作用。美军在海湾战争中表现出了巨大的信息化优势,美军最终坦克只损失几辆,而且没有成员伤亡,而伊拉克的5000多辆坦克被击毁3000多辆。

高速红外热像仪在爆炸试验中可以探测到爆炸火球表面温度的时空分布,从时间和空间两方面扩大测试范围。速度达到500帧/秒(500HZ)以上的高速红外热像仪对于爆炸过程的描述更为清晰,通过红外热像仪得出的数据可以优化爆炸过程中燃料抛散过程的动力学特征,从而选择合理的装置参数,对于提高爆炸波能量输出,进而达到高威力毁伤效应具有重要意义。 

7使用方法 正确使用红外热像仪的方法和技巧  

1)调整焦距

2)选择正确的测温范围

3)了解最大测量距离

4)仅仅要求生成清晰红外热图像,还是同时要求精确测温

5)工作背景单一

6)保证测量过程中仪器平稳

调整焦距

您可以在红外图像存储后对图像曲线进行调整,但是您无法在图像存储后改变焦距,也无法消除其他杂乱的热反射。保证第一时间操作正确性将避免现场的操作失误。仔细调整焦距!如果目标上方或周围背景的过热或过冷的反射影响到目标测量的精确性时,试着调整焦距或者测量方位,以减少或者消除反射影响。(FoRD的意思是:Focus焦距,Range范围, Distance距离)

正确的测温范围

您是否了解现场被测目标的测温范围?为了得到正确的温度读数,请务必设置正确的测温范围。当观察目标时,对仪器的温度跨度进行微调将得到最佳的图像质量。这也将同时会影响到温度曲线的质量和测温精度。

最大的测量距离

当您测量目标温度时,请务必了解能够得到精确测温读数的最大测量距离。对于非制冷微热量型焦平面探测器,要想准确地分辨目标,通过热像仪光学系统的目标图像必须占到9个像素,或者更多。 如果仪器距离目标过远,目标将会很小,测温结果将无法正确反映目标物体的真实温度,因为红外热像仪此时测量的温度平均了目标物体以及周围环境的温度。为了得到最精确的测量读数,请将目标物体尽量充满仪器的视场。显示足够的景物,才能够分辨出目标。与目标的距离不要小于热像仪光学系统的最小焦距,否则不能聚焦成清晰的图像。

4)仅仅要求生成清晰红外热图像,还是同时要求精确测温 这之间有什么区别吗?一条量化的温度曲线可用来测量现场的温度情况,也可以用来编辑显著的温升情况。清晰的红外图像同样十分重要。但是如果在工作过程中,需要进行温度测量,并要求对目标温度进行比较和趋势分析,便需要记录所有影响精确测温的目标和环境温度情况,例如发射率,环境温度,风速及风向,湿度,热反射源等等。

工作背景单一

例如,天气寒冷的时候,在户外进行检测工作时,你将会发现大多数目标都是接近于环境温度的。当在户外工作时,请务必考虑太阳反射和吸收对图像和测温的影响。因此,有些老型号的红外热像仪只能在晚上进行测量工作,以避免太阳反射带来的影响。

保证仪器平稳

所有的长波NEC红外热像仪都可以达到60Hz帧频速率,因此在拍摄图像过程中,由于仪器移动可能会引起图像模糊。为了达到最好的效果,在冻结和记录图像的时候,应尽可能保证仪器平稳。当按下存储按钮时,应尽量保证轻缓和平滑。即使轻微的仪器晃动,也可能会导致图像不清晰。推荐在您胳膊下用支撑物来稳固,或将仪器放置在物体表面,或使用三脚架,尽量保持稳定。

合理设置发射率

我们知道:任何物体在高于绝对零度(-273.15℃)的时候,其物体表面就会有红外能量也就是红外线发射出来,温度越高,发射的红外能量越强!红外线测温仪和红外热像仪就是根据这个特点来测量物体表面的温度的,既然我们知道了红外线测温仪和红外热像仪是测量物体表面的温度,那么就会免不了被物体表面的光洁度所影响,实验证明:物体表面越接近于镜面(反射越强),其表面所发出的红外能量衰减越厉害,所以我们就需要对不同物体的表面对红外能量的衰减情况做出补偿,也就是设置一个补偿系数,这个补偿系数就是发射率![4]

那么发射率如何得来的呢?

有个很简单的办法:就是与标准的接触式测温仪进行比对。计算公式为:发射率=实测值\标准值,式中的实测值就是红外线测温仪或是红外热像仪测得的温度,而标注值为接触式测温仪测得的温度,由于任何物体都不可能完全没有反射(黑体),所以往往这个修正系数都会小于1。

8发展前景 红外热成像的发展趋势 红外热成像技术的优点多,应用广,因而极具发展潜力。红外焦平面阵列探测器有两种类型:一是制冷型焦平面阵列探测器;二是非致冷焦平面阵列探测器。第二种非致冷焦平面阵列探测器的灵敏度低于制冷型焦平面阵列探测器,但其性能可以满足大多数的军事和几乎所有的民用。因此,采用非致冷焦平面阵列探测器的红外热成像仪,能真正实现小型化、低价格,是未来小型低成本应用的主流,未来必将大量应用于智能安防监控中,也是最具前途和市场潜力的发展方向
 
4
本词条对我有帮助
 
词条统计
名词推荐
相关资讯
相关文章
相关企业
瑞泰凯博(北京)科技有限公司(以下简称瑞泰凯博)是测试仪器领域领先的整合型
深圳市赛品仪器有限公司创立于2008年,是一家从事国产及进口仪器仪表设备销售的贸
北京艾然科技有限公司依托全球众多知名仪器厂商,集生产、销售于一身,为国内用户提
推荐排行
 
 
 
热词排行